Advertisement

Motor mapping of implied actions during perception of emotional body language

  • Sara Borgomaneri
    Affiliations
    Centro studi e ricerche in Neuroscienze Cognitive, Polo Scientifico-didattico di Cesena, Cesena, Italy

    Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Roma, Italy

    Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
    Search for articles by this author
  • Valeria Gazzola
    Affiliations
    Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands

    Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
    Search for articles by this author
  • Alessio Avenanti
    Correspondence
    Corresponding author.
    Affiliations
    Centro studi e ricerche in Neuroscienze Cognitive, Polo Scientifico-didattico di Cesena, Cesena, Italy

    Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Roma, Italy

    Department of Psychology, University of Bologna Alma Mater Studiorum, Bologna, Italy
    Search for articles by this author
Published:April 05, 2012DOI:https://doi.org/10.1016/j.brs.2012.03.011

      Abstract

      Background

      Perceiving and understanding emotional cues is critical for survival. Using the International Affective Picture System (IAPS) previous TMS studies have found that watching humans in emotional pictures increases motor excitability relative to seeing landscapes or household objects, suggesting that emotional cues may prime the body for action.

      Objective/Hypothesis

      Here we tested whether motor facilitation to emotional pictures may reflect the simulation of the human motor behavior implied in the pictures occurring independently of its emotional valence.

      Methods

      Motor-evoked potentials (MEPs) to single-pulse TMS of the left motor cortex were recorded from hand muscles during observation and categorization of emotional and neutral pictures. In experiment 1 participants watched neutral, positive and negative IAPS stimuli, while in experiment 2, they watched pictures depicting human emotional (joyful, fearful), neutral body movements and neutral static postures.

      Results

      Experiment 1 confirms the increase in excitability for emotional IAPS stimuli found in previous research and shows, however, that more implied motion is perceived in emotional relative to neutral scenes. Experiment 2 shows that motor excitability and implied motion scores for emotional and neutral body actions were comparable and greater than for static body postures.

      Conclusions

      In keeping with embodied simulation theories, motor response to emotional pictures may reflect the simulation of the action implied in the emotional scenes. Action simulation may occur independently of whether the observed implied action carries emotional or neutral meanings. Our study suggests the need of controlling implied motion when exploring motor response to emotional pictures of humans.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Darwin C.
        The expressions of emotions in man and animals.
        John Murray, London, UK1872 (Reprint. Chicago: University of Chicago Press, 1965)
        • James W.
        The principles of psychology.
        Holt, New York1890
        • Rizzolatti G.
        • Craighero L.
        The mirror-neuron system.
        Annu Rev Neurosci. 2004; 27: 169-192
        • Keysers C.
        • Gazzola V.
        Expanding the mirror: vicarious activity for actions, emotions, and sensations.
        Curr Opin Neurobiol. 2009; 19: 666-671
        • de Gelder B.
        • Van den Stock J.
        • Meeren H.K.
        • Sinke C.B.A.
        • Kret M.E.
        • Tamietto M.
        Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions.
        Neurosci Biobehav Rev. 2010; 34: 513-527
        • Tamietto M.
        • de Gelder B.
        Neural bases of the non-conscious perception of emotional signals.
        Nat Rev Neurosci. 2010; 11: 697-709
        • Gallese V.
        • Sinigaglia C.
        What is so special about embodied simulation?.
        Trends Cogn Sci. 2011; 15: 512-519
        • Jabbi M.
        • Keysers C.
        Inferior frontal gyrus activity triggers anterior insula response to emotional facial expressions.
        Emotion. 2008; 8: 775-780
        • Bastiaansen J.A.
        • Thioux M.
        • Keysers C.
        Evidence for mirror systems in emotions.
        Philos Trans R Soc Lond B Biol Sci. 2009; 364: 2391-2404
        • Niedenthal P.M.
        • Mermillod M.
        • Maringer M.
        • Hess U.
        The Simulation of Smiles (SIMS) model: embodied simulation and the meaning of facial expression.
        Behav Brain Sci. 2010 Dec; 33: 417-480
        • Oberman L.M.
        • Ramachandran V.S.
        The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders.
        Psychol Bull. 2007 Mar; 133: 310-327
        • Oberman L.M.
        • Winkielman P.
        • Ramachandran V.S.
        Face to face: blocking facial mimicry can selectively impair recognition of emotional expressions.
        Soc Neurosci. 2007; 2: 167-178
        • Fadiga L.
        • Craighero L.
        • Olivieri E.
        Human motor cortex excitability during the perception of others’ action.
        Curr Opin Neurobiol. 2005; 15: 213-218
        • Catmur C.
        • Walsh V.
        • Heyes C.
        Sensorimotor learning configures the human mirror system.
        Curr Biol. 2007; 17: 1527-1531
        • Avenanti A.
        • Bolognini N.
        • Maravita A.
        • Aglioti S.M.
        Somatic and motor components of action simulation.
        Curr Biol. 2007; 17: 2129-2135
        • Avenanti A.
        • Urgesi C.
        Understanding ‘what’ others do: mirror mechanisms play a crucial role in action perception.
        Soc Cogn Affect Neurosci. 2011; 6: 257-259
        • Urgesi C.
        • Maieron M.
        • Avenanti A.
        • Tidoni E.
        • Fabbro F.
        • Aglioti S.M.
        Simulating the future of actions in the human corticospinal system.
        Cereb Cortex. 2010; 20: 2511-2521
        • Candidi M.
        • Vicario C.M.
        • Abreu A.M.
        • Aglioti S.M.
        Competing mechanisms for mapping action-related categorical knowledge and observed actions.
        Cereb Cortex. 2010; 20: 2832-2841
      1. Avenanti A, Annella L, Candidi M, Urgesi C, Aglioti SM. Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions. Cereb Cortex 2012 Mar 16 [Epub ahead of print]. doi:10.1093/cercor/bhs040.

        • Lang P.J.
        The motivational organization of emotion: affect reflex connections.
        in: van Goozen S. van der Poll N.E. Sergeant J.A. The emotions: essays on emotion theory. Erlbaum, Hillsdale, NJ1993: 61-96
        • Ekman P.
        • Davidson R.J.
        The nature of emotion: fundamental questions.
        Oxford University Press, New York1994
        • Izard C.E.
        Innate and universal facial expressions: evidence from developmental and cross-cultural research.
        Psychol Bull. 1994; 115: 288-299
        • Frijda N.H.
        Emotion experience and its varieties.
        Emotion Rev. 2009; 1: 264-271
        • Chen M.
        • Bargh J.A.
        Consequences of automatic evaluation: immediate behavioral predispositions to approach or avoid the stimulus.
        Pers Soc Psychol Bull. 1999; 25: 215-224
        • Rotteveel M.
        • Phaf R.H.
        Automatic affective evaluation does not automatically predispose for arm flexion and extension.
        Emotion. 2004; 4: 156-172
        • Lang P.J.
        • Bradley M.M.
        • Cuthbert B.N.
        International affective picture system: instruction manual and affective ratings (Technical report A-4).
        University of Florida, The Center for Research in Psychophysiology, Gainsville, FL1999
        • Oliveri M.
        • Babiloni C.
        • Filippi M.M.
        • Caltagirone C.
        • Babiloni F.
        • Cicinelli P.
        • et al.
        Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues.
        Exp Brain Res. 2003; 149: 214-221
        • Hajcak G.
        • Molnar C.
        • George M.S.
        • Bolger K.
        • Koola J.
        • Nahas Z.
        Emotion facilitates action: a transcranial magnetic stimulation study of motor cortex excitability during picture viewing.
        Psychophysiology. 2007; 44: 91-97
        • van Loon A.M.
        • van den Wildenberg W.P.
        • van Stegeren A.H.
        • Hajcak G.
        • Ridderinkhof K.R.
        Emotional stimuli modulate readiness for action: a transcranial magnetic stimulation study.
        Cogn Affect Behav Neurosci. 2010; 10: 174-181
        • Baumgartner T.
        • Willi M.
        • Jäncke L.
        Modulation of corticospinal activity by strong emotions evoked by pictures and classical music: a transcranial magnetic stimulation study.
        Neuroreport. 2007; 18: 261-265
        • Coombes S.A.
        • Tandonnet C.
        • Fujiyama H.
        • Janelle C.M.
        • Cauraugh J.H.
        • Summers J.J.
        Emotion and motor preparation: a transcranial magnetic stimulation study of corticospinal motor tract excitability.
        Cogn Affect Behav Neurosci. 2009; 9: 380-388
        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        • Safety of TMS Consensus Group
        Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin Neurophysiol. 2009; 120: 2008-2039
        • Rossini P.M.
        • Barker A.T.
        • Berardelli A.
        • Caramia M.D.
        • Caruso G.
        • Cracco R.Q.
        • et al.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee.
        Electroencephalogr Clin Neurophysiol. 1994; 91: 79-92
        • Fourkas A.D.
        • Bonavolontà V.
        • Avenanti A.
        • Aglioti S.M.
        Kinesthetic imagery and tool-specific modulation of corticospinal representations in expert tennis players.
        Cereb Cortex. 2008; 18: 2382-2390
        • Tokimura H.
        • Tokimura Y.
        • Oliviero A.
        • Asakura T.
        • Rothwell J.C.
        Speech-induced changes in corticospinal excitability.
        Ann Neurol. 1996; 40: 628-634
        • Meister I.G.
        • Boroojerdi B.
        • Foltys H.
        • Sparing R.
        • Huber W.
        • Töpper R.
        Motor cortex hand area and speech: implications for the development of language.
        Neuropsychologia. 2003; 41: 401-406
        • Chen R.
        • Classen J.
        • Gerloff C.
        • Celnik P.
        • Wassermann E.M.
        • Hallett M.
        • et al.
        Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
        Neurology. 1997; 48: 1398-1403
        • Devanne H.
        • Lavoie B.A.
        • Capaday C.
        Input-output properties and gain changes in the human corticospinal pathway.
        Exp Brain Res. 1997; 114: 329-338
        • de Gelder B.
        • Snyder J.
        • Greve D.
        • Gerard G.
        • Hadjikhani N.
        Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body.
        Proc Natl Acad Sci U S A. 2004; 101: 16701-16706
        • van de Riet W.A.
        • Grezes J.
        • de Gelder B.
        Specific and common brain regions involved in the perception of faces and bodies and the representation of their emotional expressions.
        Soc Neurosci. 2009; 4: 101-120
        • Grèzes J.
        • Pichon S.
        • de Gelder B.
        Perceiving fear in dynamic body expressions.
        Neuroimage. 2007; 35: 959-967
        • van der Gaag C.
        • Minderaa R.B.
        • Keysers C.
        The BOLD signal in the amygdala does not differentiate between dynamic facial expressions.
        Soc Cogn Affect Neurosci. 2007; 2: 93-103
        • Kret M.E.
        • Pichon S.
        • Grèzes J.
        • de Gelder B.
        Similarities and differences in perceiving threat from dynamic faces and bodies. An fMRI study.
        Neuroimage. 2011; 54: 1755-1762
        • Strafella A.P.
        • Paus T.
        Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study.
        Neuroreport. 2000; 11: 2289-2292
        • Fecteau S.
        • Lassonde M.
        • Théoret H.
        Modulation of motor cortex excitability during action observation in disconnected hemispheres.
        Neuroreport. 2005; 16: 1591-1594
        • Fourkas A.D.
        • Avenanti A.
        • Urgesi C.
        • Aglioti S.M.
        Corticospinal facilitation during first and third person imagery.
        Exp Brain Res. 2006; 168: 143-151
        • Cattaneo L.
        • Caruana F.
        • Jezzini A.
        • Rizzolatti G.
        Representation of goal and movements without overt motor behavior in the human motor cortex: a transcranial magnetic stimulation study.
        J Neurosci. 2009; 29: 11134-11138
        • Schütz-Bosbach S.
        • Avenanti A.
        • Aglioti S.M.
        • Haggard P.
        Don’t do it! Cortical inhibition and self-attribution during action observation.
        J Cogn Neurosci. 2009; 21: 1215-1227
        • Fecteau S.
        • Tormos J.M.
        • Gangitano M.
        • Théoret H.
        • Pascual-Leone A.
        Modulation of cortical motor outputs by the symbolic meaning of visual stimuli.
        Eur J Neurosci. 2010; 32: 172-177
        • Cavallo A.
        • Becchio C.
        • Sartori L.
        • Bucchioni G.
        • Castiello U.
        Grasping with tools: corticospinal excitability reflects observed hand movements.
        Cereb Cortex. 2011; ([Epub ahead of print])
        • Borroni P.
        • Montagna M.
        • Cerri G.
        • Baldissera F.
        Cyclic time course of motor excitability modulation during the observation of a cyclic hand movement.
        Brain Res. 2007; 1065: 115-124
        • Catmur C.
        • Mars R.B.
        • Rushworth M.F.
        • Heyes C.
        Making mirrors: premotor cortex stimulation enhances mirror and counter-mirror motor facilitation.
        J Cogn Neurosci. 2011; 23: 2352-2362
        • Keysers C.
        • Gazzola V.
        Social neuroscience: mirror neurons recorded in humans.
        Curr Biol. 2010; 20: R353-R354
        • Gazzola V.
        • Rizzolatti G.
        • Wicker B.
        • Keysers C.
        The anthropomorphic brain: the mirror neuron system responds to human and robotic actions.
        Neuroimage. 2007; 35: 1674-1684
        • Minio-Paluello I.
        • Avenanti A.
        • Aglioti S.M.
        Left hemisphere dominance in reading the sensory qualities of others’ pain?.
        Soc Neurosci. 2006; 1: 320-333
        • Fecteau S.
        • Pascual-Leone A.
        • Theoret H.
        Psychopathy and the mirror neuron system: preliminary findings from a non-psychiatric sample.
        Psychiatry Res. 2008; 160: 137-144
        • Avenanti A.
        • Minio-Paluello I.
        • Sforza A.
        • Aglioti S.M.
        Freezing or escaping? Opposite modulations of empathic reactivity to the pain of others.
        Cortex. 2009; 45: 1072-1077
        • Wood R.
        • Gallese V.
        • Cattaneo L.
        Visuotactile empathy within the primary somatosensory cortex revealed by short-latency afferent inhibition.
        Neurosci Lett. 2010; 473: 28-31
        • Avenanti A.
        • Minio-Paluello I.
        • Bufalari I.
        • Aglioti S.M.
        Stimulus-driven modulation of motor-evoked potentials during observation of others’ pain.
        Neuroimage. 2006; 32: 316-324
        • Avenanti A.
        • Minio-Paluello I.
        • Bufalari I.
        • Aglioti S.M.
        The pain of a model in the personality o fan onlooker: influence of state-reactivity and personality traits on embodied empathy for pain.
        Neuroimage. 2009; 44: 275-283
        • Preston S.D.
        • de Waal F.B.M.
        Empathy: its ultimate and proximate bases.
        Behav Brain Sci. 2002; 25: 1-71
        • Avenanti A.
        • Aglioti S.M.
        The sensorimotor side of empathy for pain.
        in: Mancia M. Psychoanalysis and neuroscience. Springer-Verlag Italia, Milan2006: 235-256
        • Keysers C.
        • Kaas J.H.
        • Gazzola V.
        Somatosensation in social perception.
        Nat Rev Neurosci. 2010; 11: 417-428
        • Caetano G.
        • Jousmäki V.
        • Hari R.
        Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions.
        Proc Natl Acad Sci. 2007; 104: 9058-9062
        • Raos V.
        • Evangeliou M.N.
        • Savaki H.E.
        Mental simulation of action in the service of action perception.
        J Neurosci. 2007; 27: 12675-12683
        • Etzel J.A.
        • Gazzola V.
        • Keysers C.
        Testing simulation theory with cross-modal multivariate classification of fMRI data.
        Plos One. 2008; 3: e3690
        • Kilner J.M.
        • Neal A.
        • Weiskopf N.
        • Friston K.J.
        • Frith C.D.
        Evidence of mirror neurons in human inferior frontal gyrus.
        J Neurosci. 2009; 29: 10153-10159
        • Turella L.
        • Tubaldi F.
        • Erb M.
        • Grodd W.
        • Castiello U.
        Object presence modulates activity within the somatosensory component of the action observation network.
        Cereb Cortex. 2011; ([Epub ahead of print])
        • Arnstein D.
        • Cui F.
        • Keysers C.
        • Maurits N.M.
        • Gazzola V.
        μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices.
        J Neurosci. 2011; 31: 14243-14249
        • Keysers C.
        • Wicker B.
        • Gazzola V.
        • Anton J.L.
        • Fogassi L.
        • Gallese V.
        A touching sight: SII/PV activation during the observation and experience of touch.
        Neuron. 2004; 42: 335-346
        • Bufalari I.
        • Aprile T.
        • Avenanti A.
        • Di Russo F.
        • Aglioti S.M.
        Empathy for pain in the somatosensory cortex.
        Cereb Cortex. 2007; 17: 2553-2561
        • Lamm C.
        • Nusbaum H.C.
        • Meltzoff A.N.
        • Decety J.
        What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain.
        PLoS One. 2007; 2: e1292
        • Valeriani M.
        • Betti V.
        • Le Pera D.
        • De Armas L.
        • Miliucci R.
        • Restuccia D.
        • et al.
        Seeing the pain of others while being in pain: a laser-evoked potentials study.
        Neuroimage. 2008; 40: 1419-1428
        • Lamm C.
        • Decety J.
        • Singer T.
        Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain.
        Neuroimage. 2011; 54: 2492-2502
        • Aziz-Zadeh L.
        • Sheng T.
        • Liew S.L.
        • Damasio H.
        Understanding otherness: the neural bases of action comprehension and pain empathy in a congenital amputee.
        Cereb Cortex. 2011 Jul 6; ([Epub ahead of print])
        • Bolognini N.
        • Rossetti A.
        • Maravita A.
        • Miniussi C.
        Seeing touch in the somatosensory cortex: a TMS study of the visual perception of touch.
        Hum Brain Mapp. 2011; 32: 2104-2114
        • Morrison I.
        • Björnsdotter M.
        • Olausson H.
        Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds.
        J Neurosci. 2011; 31: 9554-9562
        • Winston J.S.
        • O’Doherty J.
        • Dolan R.J.
        Common and distinct neural responses during direct and incidental processing of multiple facial emotions.
        Neuroimage. 2003; 20: 84-97
        • Gur R.C.
        • Schroeder L.
        • Turner T.
        • McGrath C.
        • Chan R.M.
        • Turetsky B.I.
        • et al.
        Brain activation during facial emotion processing.
        Neuroimage. 2002; 16: 651-662
        • Hariri A.R.
        • Mattay V.S.
        • Tessitore A.
        • Fera F.
        • Weinberger D.R.
        Neocortical modulation of the amygdala response to fearful stimuli.
        Biol Psychiatry. 2003; 53: 494-501
        • Habel U.
        • Windischberger C.
        • Derntl B.
        • Robinson S.
        • Kryspin-Exner I.
        • Gur R.C.
        • et al.
        Amygdala activation and facial expressions: explicit emotion discrimination versus implicit emotion processing.
        Neuropsychologia. 2007; 45: 2369-2377
        • Mikhailova E.S.
        • Bogomolova I.V.
        Evoked cerebral cortex activity in the human brain in conditions of the active and passive perception of facial expressions.
        Neurosci Behav Physiol. 2000; 30: 679-685
        • Borod J.C.
        • Cicero B.A.
        • Obler L.K.
        • Welkowitz J.
        • Erhan H.M.
        • Santschi C.
        • et al.
        Right hemisphere emotional perception: evidence across multiple channels.
        Neuropsychology. 1998; 12: 446-458
        • Nishitani N.
        • Hari R.
        Viewing lip forms: cortical dynamics.
        Neuron. 2002; 36: 1211-1220
        • Nishitani N.
        • Avikainen S.
        • Hari R.
        Abnormal imitation-related cortical activation sequences in Asperger’s syndrome.
        Ann Neurol. 2004; 55: 558-562
        • Proverbio A.M.
        • Riva F.
        • Zani A.
        Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas.
        PLoS One. 2009; 4: e5389
        • Olofsson J.K.
        • Nordin S.
        • Sequeira H.
        • Polich J.
        Affective picture processing: an integrative review of ERP findings.
        Biol Psychol. 2008; 77: 247-265
        • Schutter D.J.
        • Hofman D.
        • Van Honk J.
        Fearful faces selectively increase corticospinal motor tract excitability: a transcranial magnetic stimulation study.
        Psychophysiology. 2008; 45: 345-348