Advertisement
Vagus Nerve Stimulation (VNS) Original Article| Volume 8, ISSUE 3, P624-636, May 2015

Download started.

Ok

Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans

  • Eleni Frangos
    Correspondence
    Corresponding author. Department of Psychology, Rutgers University, Room 304, 101 Warren Street, Newark, NJ 07102, USA. Tel.: +1 201 233 7982.
    Affiliations
    Department of Psychology, Rutgers University, 101 Warren St, Newark, NJ 07102, USA
    Search for articles by this author
  • Jens Ellrich
    Affiliations
    Cerbomed GmbH, Henkestrasse 91, 91052 Erlangen, Germany

    Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D2, DK-9220 Aalborg, Denmark

    Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuremberg, Universitaetsstrasse 17, D-91054 Erlangen, Germany
    Search for articles by this author
  • Barry R. Komisaruk
    Affiliations
    Department of Psychology, Rutgers University, 101 Warren St, Newark, NJ 07102, USA
    Search for articles by this author
Published:December 05, 2014DOI:https://doi.org/10.1016/j.brs.2014.11.018

      Highlights

      • Electrical stimulation of the cymba conchae activates the NTS in humans.
      • Activations and deactivations of vagal projections were found throughout the brain.
      • The pattern of activity can account for the beneficial effects of t-VNS and VNS.

      Abstract

      Background

      Tract-tracing studies in cats and rats demonstrated that the auricular branch of the vagus nerve (ABVN) projects to the nucleus tractus solitarii (NTS); it has remained unclear as to whether or not the ABVN projects to the NTS in humans.

      Objective

      To ascertain whether non-invasive electrical stimulation of the cymba conchae, a region of the external ear exclusively innervated by the ABVN, activates the NTS and the “classical” central vagal projections in humans.

      Methods

      Twelve healthy adults underwent two fMRI scans in the same session. Electrical stimulation (continuous 0.25ms pulses, 25Hz) was applied to the earlobe (control, scan #1) and left cymba conchae (scan #2). Statistical analyses were performed with FSL. Two region-of-interest analyses were performed to test the effects of cymba conchae stimulation (compared to baseline and control, earlobe, stimulation) on the central vagal projections (corrected; brainstem P < 0.01, forebrain P < 0.05), followed by a whole-brain analysis (corrected, P < 0.05).

      Results

      Cymba conchae stimulation, compared to earlobe (control) stimulation, produced significant activation of the “classical” central vagal projections, e.g., widespread activity in the ipsilateral NTS, bilateral spinal trigeminal nucleus, dorsal raphe, locus coeruleus, and contralateral parabrachial area, amygdala, and nucleus accumbens. Bilateral activation of the paracentral lobule was also observed. Deactivations were observed bilaterally in the hippocampus and hypothalamus.

      Conclusion

      These findings provide evidence in humans that the central projections of the ABVN are consistent with the “classical” central vagal projections and can be accessed non-invasively via the external ear.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Altschuler S.M.
        • Rinaman L.
        • Miselis R.R.
        Viscerotopic representation of the alimentary tract in the dorsal and ventral vagal complexes in the rat.
        in: Ritter S. Ritter R.C. Barnes C.D. neuroanatomy and physiology of abdominal vagal afferents. CRC Press, Boca Raton1992: 22-53
        • Andersson J.L.R.
        • Jenkinson M.
        • Smith S.M.
        Non-linear optimisation. FMRIB technical report TR07JA1.
        2007
        • Andersson J.L.R.
        • Jenkinson M.
        • Smith S.M.
        Non-linear registration, aka spatial normalisation. FMRIB technical report TR07JA2.
        2007
        • Basbaum A.I.
        • Fields H.L.
        Endogenous pain control mechanisms: review and hypothesis.
        Ann Neurol. 1978; 4: 451-462
        • Berthoud H.R.
        • Neuhuber W.L.
        Functional and chemical anatomy of the afferent vagal system.
        Auton Neurosci. 2000; 85: 1-17
        • Bohning D.E.
        • Lomarev M.P.
        • Denslow S.
        • Nahas Z.
        • Shastri A.
        • George M.S.
        Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI.
        Invest Radiol. 2001; 36: 470-479
        • Busch V.
        • Zeman F.
        • Heckel A.
        • Menne F.
        • Ellrich J.
        • Eichhammer P.
        The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study.
        Brain Stimul. 2013; 6: 202-209
        • Clancy J.A.
        • Mary D.A.
        • Witte K.K.
        • Greenwood J.P.
        • Deuchars S.A.
        • Deuchars J.
        Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.
        Brain Stimul. 2014 Nov-Dec; 7 (Epub 2014 Jul 16): 871-877https://doi.org/10.1016/j.brs.2014.07.031
        • Collins J.J.
        • Lin C.E.
        • Berthoud H.R.
        • Papka R.E.
        Vagal afferents from the uterus and cervix provide direct connections to the brainstem.
        Cell Tissue Res. 1999; 295: 43-54
        • DeGiorgio C.M.
        • Schachter S.C.
        • Handforth A.
        • et al.
        Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures.
        Epilepsia. 2000; 41: 1195-1200
        • Dietrich S.
        • Smith J.
        • Scherzinger C.
        • et al.
        A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI.
        Biomed Tech (Berl). 2008; 53: 104-111
        • Ellrich J.
        Transcutaneous vagus nerve stimulation.
        Eur Neurol Rev. 2011; 6: 2-4
        • Fay T.
        Observations and results from intracranial section of glossopharyngeus and vagus nerves in man.
        J Neurol Psychopathol. 1927; 8: 110-123
        • Felten D.L.
        • Jozefowicz R.
        Netter's atlas of human neuroscience.
        Icon Learning Systems LLC, Teterboro, NJ2003
        • Fornai F.
        • Ruffoli R.
        • Giorgi F.S.
        • Paparelli A.
        The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation.
        Eur J Neurosci. 2011; 33: 2169-2178
        • Frangos E.
        • Allen K.
        • Wise N.
        • Ellrich J.
        • Birbano W.
        • Komisaruk B.R.
        Activation of vagus projections in humans via electrical stimulation of the external ear: fMRI time course analysis.
        in: Poster presented at the annual meeting of the Society for Neuroscience, San Diego, CA. 2013
        • Frangos E.
        • Allen K.
        • Wise N.
        • Ellrich J.
        • Birbano W.
        • Komisaruk B.R.
        Persistent activation of vagus projections in humans after electrical stimulation of the external ear: fMRI evidence.
        in: Poster presented at the annual meeting of the North American Neuromodulation Society, Las Vegas, NV. 2013
        • Frangos E.
        • Ellrich J.
        • Dell’Italia J.
        • Wise N.
        • Komisaruk B.R.
        Activation of human vagus nerve afferent projections via electrical stimulation of external ear: fMRI evidence.
        in: Poster presented at the annual meeting of the Society for Neuroscience, New Orleans, LA. 2012
        • Gao X.Y.
        • Rong P.
        • Ben H.
        • Liu K.
        • Zhu B.
        • Zhang S.
        Morphological and electrophysiological characterization of auricular branch of vagus nerve: projections to the NTS in mediating cardiovascular inhibition evoked by the acupuncture-like stimulation.
        Abstr Soc Neurosci. 2010; (694:22/HHH45)
        • Gogolák G.
        • Stumpf C.
        • Petsche H.
        • Sterc J.
        The firing pattern of septal neurons and the form of the hippocampal theta wave.
        Brain Res. 1968; 7: 201-207
        • Greve D.N.
        • Fischl B.
        Accurate and robust brain image alignment using boundary-based registration.
        Neuroimage. 2009; 48: 63-72
        • Hein E.
        • Nowak M.
        • Kiess O.
        • et al.
        Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study.
        J Neural Transm. 2013; 120: 821-827
        • Henry T.R.
        • Bakay R.A.
        • Votaw J.R.
        • et al.
        Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation.
        Epilepsia. 1998; 39: 983-990
        • Henry T.R.
        • Votaw J.R.
        • Pennell P.B.
        • et al.
        Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy.
        Neurology. 1999; 52: 1166-1173
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimisation for the robust and accurate linear registration and motion correction of brain images.
        NeuroImage. 2002; 17: 825-841
        • Jenkinson M.
        • Smith S.M.
        A global optimisation method for robust affine registration of brain images.
        Med Image Anal. 2001; 5: 143-156
        • Jenkinson M.
        A fast, automated, n-dimensional phase unwrapping algorithm.
        Magn Reson Med. 2003; 49: 193-197
        • Jenkinson M.
        Improving the registration of B0-distorted EPI images using calculated cost function weights.
        in: Tenth International Conference on functional mapping of the human brain. 2004
        • Kirchner A.
        • Birklein F.
        • Stefan H.
        • Handwerker H.O.
        Left vagus nerve stimulation suppresses experimentally induced pain.
        Neurology. 2000; 55: 1167-1171
        • Komisaruk B.R.
        • Bianca R.
        • Sansone G.
        • et al.
        Brain-mediated responses to vaginocervical stimulation in spinal cord-transected rats: role of the vagus nerves.
        Brain Res. 1996; 708: 128-134
        • Komisaruk B.R.
        • Gerdes C.A.
        • Whipple B.
        “Complete” spinal cord injury does not block perceptual responses to genital self-stimulation in women.
        Arch Neurol. 1997; 54: 1513-1520
        • Komisaruk B.R.
        • Whipple B.
        • Crawford A.
        • Liu W.C.
        • Kalnin A.
        • Mosier K.
        Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves.
        Brain Res. 2004; 1024: 77-88
        • Komisaruk B.R.
        • Wise N.
        • Frangos E.
        • Liu W.C.
        • Whipple B.
        • Brody S.
        Women's clitoris, vagina and cervix mapped on the sensory cortex, using fMRI.
        J Sex Med. 2011; 8: 2822-2830
        • Krahl S.E.
        • Clark K.B.
        • Smith D.C.
        • Browning R.A.
        Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation.
        Epilepsia. 1998; 39: 709-714
        • Kraus T.
        • Hösl K.
        • Kiess O.
        • Schanze A.
        • Kornhuber J.
        • Forster C.
        BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation.
        J Neural Transm. 2007; 114: 1485-1493
        • Kraus T.
        • Kiess O.
        • Hösl K.
        • Terekhin P.
        • Kornhuber J.
        • Forster C.
        CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study.
        Brain Stimul. 2013; 6: 798-804
        • Liu W.C.
        • Mosier K.
        • Kalnin A.J.
        • Marks D.
        BOLD fMRI activation induced by vagus nerve stimulation in seizure patients.
        J Neurol Neurosurg Psychiatry. 2003; 74: 811-813
        • Lomarev M.
        • Denslow S.
        • Nahas Z.
        • Chae J.H.
        • George M.S.
        • Bohning D.E.
        Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects.
        J Psychiatr Res. 2002; 36: 219-227
        • Mazarati A.M.
        • Baldwin R.A.
        • Shinmei S.
        • Sankar R.
        In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures.
        J Neurochem. 2005; 95: 1495-1503
        • Millan M.J.
        Descending control of pain.
        Prog Neurobiol. 2002; 66: 355-474
        • Nahas Z.1
        • Teneback C.
        • Chae J.H.
        • et al.
        Serial vagus nerve stimulation functional MRI in treatment-resistant depression.
        Neuropsychopharmacology. 2007; 32: 1649-1660
        • Naidich T.P.
        • Duvernoy H.M.
        • Delman B.N.
        • Sorensen A.G.
        • Kollias S.S.
        • Haacke E.M.
        Duvernoy’s atlas of the human brain stem and cerebellum.
        Springer-Verlag/Wien, Vienna2009
        • Napadow V.
        • Edwards R.R.
        • Cahalan C.M.
        • et al.
        Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation.
        Pain Med. 2012; 13: 777-789
        • Narayanan J.T.
        • Watts R.
        • Haddad N.
        • Labar D.R.
        • Li P.M.
        • Filippi C.G.
        Cerebral activation during vagus nerve stimulation: a functional MR study.
        Epilepsia. 2002; 43: 1509-1514
        • Nomura S.
        • Mizuno N.
        Central distribution of primary afferent fibers in the Arnold's nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat.
        Brain Res. 1984; 292: 199-205
        • Ortega-Villalobos M.
        • García-Bazán M.
        • Solano-Flores L.P.
        • Ninomiya-Alarcón J.G.
        • Guevara-Guzmán R.
        • Wayner M.J.
        Vagus nerve afferent and efferent innervation of the rat uterus: an electrophysiological and HRP study.
        Brain Res Bull. 1990; 25: 365-371
        • Panayiotopoulos C.P.
        The epilepsies: seizures, syndromes and management.
        Bladon Medical Publishing, Chipping Norton, Oxfordshire, UK2004
        • Peuker E.T.
        • Filler T.J.
        The nerve supply of the human auricle.
        Clin Anat. 2002; 15: 35-37
        • Pizzagalli D.A.
        • Holmes A.J.
        • Dillon D.G.
        • et al.
        Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder.
        Am J Psychiatry. 2009; 166: 702-710
        • Poldrack R.A.
        • Mumford J.A.
        • Nichols T.E.
        Handbook of functional MRI data analysis.
        Cambridge University Press, New York2011
        • Raedt R.
        • Clinckers R.
        • Mollet L.
        • et al.
        Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model.
        J Neurochem. 2011; 117: 461-469
        • Ruggiero D.A.
        • Underwood M.D.
        • Mann J.J.
        • Anwar M.
        • Arango V.
        The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method.
        J Auton Nerv Syst. 2000; 79: 181-190
        • Rush A.J.
        • George M.S.
        • Sackeim H.A.
        • et al.
        Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study.
        Biol Psychiatry. 2000; 47: 276-286
        • Sawchenko P.E.
        Central connections of the sensory and motor nuclei of the vagus nerve.
        J Auton Nerv Syst. 1983; 9: 13-26
        • Stefan H.
        • Kreiselmeyer G.
        • Kerling F.
        • et al.
        Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial.
        Epilepsia. 2012; 53: e115-e118
        • Tekdemir I.
        • Aslan A.
        • Elhan A.
        A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex.
        Surg Radiol Anat. 1998; 20: 253-257
      1. The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures.
        Neurology. 1995; 45: 224-230
        • Wetzel B.
        • Pavlovic D.
        • Kuse R.
        • et al.
        The effect of auricular acupuncture on fentanyl requirement during hip arthroplasty: a randomized controlled trial.
        Clin J Pain. 2011; 27: 262-267
        • Woolrich M.W.
        • Ripley B.D.
        • Brady J.M.
        • Smith S.M.
        Temporal autocorrelation in univariate linear modelling of FMRI data.
        NeuroImage. 2001; 14: 1370-1386
        • Young K.D.
        • Zotev V.
        • Phillips R.
        • et al.
        Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder.
        PLoS One. 2014; 9: e88785