Highlights
- •High frequency optogenetic stimulation induces acute seizure suppression.
- •Optical stimulation suppresses focal and distal epileptiform activity.
- •Seizure suppression decreases over time but can be reinstated by intermittent stimulation.
- •GABA transmission activated by optical stimulation is implicated in seizure suppression.
Abstract
Background
Electrical high frequency stimulation (HFS) has been shown to suppress seizures. However,
the mechanisms of seizure suppression remain unclear and techniques for blocking specific
neuronal populations are required.
Objective
The goal is to study the optical HFS protocol on seizures as well as the underlying
mechanisms relevant to the HFS-mediated seizure suppression by using optogenetic methodology.
Methods
Thy1-ChR2 transgenic mice were used in both vivo and in vitro experiments. Optical stimulation with pulse trains at 20 and 50 Hz was applied on
the focus to determine its effects on in vivo seizure activity induced by 4-AP and recorded in the bilateral and ipsilateral-temporal
hippocampal CA3 regions. In vitro methodology was then used to study the mechanisms of the in vivo suppression.
Results
Optical HFS was able to generate 82.4% seizure suppression at 50 Hz with light power
of 6.1 mW and 80.2% seizure suppression at 20 Hz with light power of 2.0 mW. The suppression
percentage increased by increasing the light power and saturated when the power reached
above-mentioned values. In vitro experimental results indicate that seizure suppression was mediated by activation
of GABA receptors. Seizure suppression effect decreased with continued application
but the suppression effect could be restored by intermittent stimulation.
Conclusions
This study shows that optical stimulation at high frequency targeting an excitatory
opsin has potential therapeutic application for fast control of an epileptic focus.
Furthermore, electrophysiological observations of extracellular and intracellular
signals reveled that GABAergic neurotransmission activated by optical stimulation
was responsible for the suppression.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Brain Stimulation: Basic, Translational, and Clinical Research in NeuromodulationAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Distribution of epilepsy syndromes in a cohort of children prospectively monitored from the time of their first unprovoked seizure.Epilepsia. 1999 Oct; 40: 1378-1383
- Mesial temporal lobe epilepsy with hippocampal sclerosis: report of the commission on Neurosurgery.Epilepsia. 2004; 45: 695-714
- Effect of stimulus parameters in the treatment of seizures by electrical stimulation in the Kainate animal model.Int J Neural Syst. 2011; 21: 151-162
- Comparison of hippocampal deep brain stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats.Epilepsy Res. 2010; 88: 239-246
- High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: an acute in vivo study.Brain Stimul. 2013; 6: 180-189
- Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study.Epilepsia. 2007; 48: 1895-1903
- Deep brain stimulation in patients with refractory temporal lobe epilepsy.Epilepsia. 2007; 48: 1551-1560
- Hippocampal electrical stimulation in mesial temporal lobe epilepsy.Neurology. 2006 May; 66: 1490-1494
- Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro.J Physiol. 2003; 547: 427-434
- Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.J Neurophysiol. 2004; 91: 1457-1469
- High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons.J Neurophysiol. 2001; 85: 1351-1356
- Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro.J Neurophysiol. 2007; 97: 1887-1902
- Millisecond-timescale, genetically targeted optical control of neural activity.Nat Neurosci. 2005; 8: 1263-1268
- Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.Proc Natl Acad Sci U S A. 2003; 100: 13940-13945
- Halorhodopsin is a light-driven chloride pump.J Biol Chem. 1982; 257: 306-313
- Multimodal fast optical interrogation of neural circuitry.Nature. 2007; 446: 633-639
- An optogenetic approach in epilepsy.Neuropharmacology. 2013; 69: 89-95
- Optogenetic control of epileptiform activity.Proc Natl Acad Sci U S A. 2009; 106: 12162-12167
- Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy.Sci Transl Med. 2012; 4: 161ra52
- Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury.Nat Neurosci. 2013; 16: 64-70
- On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy.Nat Commun. 2013; 4: 1376
- In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2.Neuron. 2007; 54: 205-218
- Jasper's basic mechanisms of the epilepsies.4th ed. National Center for Biotechnology Information, Bethesda2012
- Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.Hippocampus. 2012; 22: 98-105
- Effects of high frequency electrical stimulation and R-verapamil on seizure susceptibility and glutamate and GABA release in a model of phenytoin-resistant seizures.Neuropharmacology. 2011; 61: 807-814
- Mechanisms of disease – Epilepsy.N Engl J Med. 2003 Sep; 349: 1257-1266
- The hippocampal CA3 network- an in-vivo intracellular labeling study.J Comp Neurol. 1994 Jan; 339: 181-208
- Hippocampal CA1 interneurons- an in-vivo intracellular labelling study.J Neurosci. 1995 Oct; 15: 6651-6665
- Global optogenetic activation of inhibitory interneurons during epileptiform activity.J Neurosci. 2014; 34: 3364-3377
- Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.Neurobiol Dis. 2014; 65: 133-141
- GABA(A) receptors at hippocampal mossy fibers.Neuron. 2003 Sep; 39: 961-973
- Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals.J Physiol. 1995 Mar; 483: 597-611
- Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus: a colocalization study of neuronal markers and the retrograde tracer fluoro-gold.J Comp Neurol. 2001; 441: 324-344
- Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus.Proc Natl Acad Sci U S A. 2005; 102: 13295-13300
- Spatial and temporal dynamics in the ionic driving force for GABAA receptors.Neural Plast. 2011; 2011: 1-10
- Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric-acid.J Physiol. 1980; 305: 279-296
- Gaba-mediated biphasic inhibitory responses in hippocampus.Nature. 1979; 281: 315-317
- Activity-dependent disinhibition. II. effects of extracellular potassium, furosemide, and membrane potential on ECL- in hippocampal CA3 neurons.J Neurophysiol. 1989 Mar; 61: 512-523
- Use-dependent shift from inhibitory to excitatory GABA(A) receptor action in SP-O interneurons in the rat hippocampal CA3 area.J Neurophysiol. 2003 Sep; 90: 1983-1995
- Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission.Nat Neurosci. 2012; 15: 1102-1104
- Transition to Seizure: Ictal discharge is preceded by exhausted presynaptic GABA release in the hippocampal CA3 region.J Neurosci. 2012; 32: 2499-2512
- Interneuron and pyramidal cell interplay during in vitro seizure-like events.J Neurophysiol. 2006; 95: 3948-3954
- Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport.J Physiol. 1999 Sep; 519: 693-712
- Enhanced isoflurane suppression of excitatory synaptic transmission in the aged rat hippocampus.Br J Pharmacol. 1998 Jul; 124: 1075-1082
- Effects of isoflurane on hippocampal seizures at immature rats in vivo.Fiziol Zh. 2008; 54: 40-45
- Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2.Nat Protoc. 2010; 5: 247-254
- Optogenetics in neural systems.Neuron. 2011; 71: 9-34
Article info
Publication history
Published online: July 18, 2014
Accepted:
July 13,
2014
Received in revised form:
June 17,
2014
Received:
March 18,
2014
Identification
Copyright
© 2014 Elsevier Inc. Published by Elsevier Inc. All rights reserved.