Other Original Article| Volume 7, ISSUE 6, P890-899, November 2014

Download started.


Seizure Suppression by High Frequency Optogenetic Stimulation Using In Vitro and In Vivo Animal Models of Epilepsy

  • Author Footnotes
    1 The first two authors have equal contribution.
    Chia-Chu Chiang
    1 The first two authors have equal contribution.
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
    Search for articles by this author
  • Author Footnotes
    1 The first two authors have equal contribution.
    Thomas P. Ladas
    1 The first two authors have equal contribution.
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
    Search for articles by this author
  • Luis E. Gonzalez-Reyes
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
    Search for articles by this author
  • Dominique M. Durand
    Corresponding author. Departments of Biomedical Engineering, Neurosciences, and Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Wickenden Bldg. Rm. 112, Cleveland, OH 44106, USA.
    Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
    Search for articles by this author
  • Author Footnotes
    1 The first two authors have equal contribution.


      • High frequency optogenetic stimulation induces acute seizure suppression.
      • Optical stimulation suppresses focal and distal epileptiform activity.
      • Seizure suppression decreases over time but can be reinstated by intermittent stimulation.
      • GABA transmission activated by optical stimulation is implicated in seizure suppression.



      Electrical high frequency stimulation (HFS) has been shown to suppress seizures. However, the mechanisms of seizure suppression remain unclear and techniques for blocking specific neuronal populations are required.


      The goal is to study the optical HFS protocol on seizures as well as the underlying mechanisms relevant to the HFS-mediated seizure suppression by using optogenetic methodology.


      Thy1-ChR2 transgenic mice were used in both vivo and in vitro experiments. Optical stimulation with pulse trains at 20 and 50 Hz was applied on the focus to determine its effects on in vivo seizure activity induced by 4-AP and recorded in the bilateral and ipsilateral-temporal hippocampal CA3 regions. In vitro methodology was then used to study the mechanisms of the in vivo suppression.


      Optical HFS was able to generate 82.4% seizure suppression at 50 Hz with light power of 6.1 mW and 80.2% seizure suppression at 20 Hz with light power of 2.0 mW. The suppression percentage increased by increasing the light power and saturated when the power reached above-mentioned values. In vitro experimental results indicate that seizure suppression was mediated by activation of GABA receptors. Seizure suppression effect decreased with continued application but the suppression effect could be restored by intermittent stimulation.


      This study shows that optical stimulation at high frequency targeting an excitatory opsin has potential therapeutic application for fast control of an epileptic focus. Furthermore, electrophysiological observations of extracellular and intracellular signals reveled that GABAergic neurotransmission activated by optical stimulation was responsible for the suppression.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Shinnar S.
        • O'Dell C.
        • Berg A.T.
        Distribution of epilepsy syndromes in a cohort of children prospectively monitored from the time of their first unprovoked seizure.
        Epilepsia. 1999 Oct; 40: 1378-1383
        • Wieser H.G.
        Mesial temporal lobe epilepsy with hippocampal sclerosis: report of the commission on Neurosurgery.
        Epilepsia. 2004; 45: 695-714
        • Rajdev P.
        • Ward M.
        • Irazoqui P.
        Effect of stimulus parameters in the treatment of seizures by electrical stimulation in the Kainate animal model.
        Int J Neural Syst. 2011; 21: 151-162
        • Wyckhuys T.
        • Raedt R.
        • Vonck K.
        • Wadman W.
        • Boon P.
        Comparison of hippocampal deep brain stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats.
        Epilepsy Res. 2010; 88: 239-246
        • Chiang C.-C.
        • Lin C.-C.K.
        • Ju M.-S.
        • Durand D.M.
        High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: an acute in vivo study.
        Brain Stimul. 2013; 6: 180-189
        • Velasco A.L.
        • Velasco F.
        • Velasco M.
        • Trejo D.
        • Castro G.
        • Carrillo-Ruiz J.D.
        Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study.
        Epilepsia. 2007; 48: 1895-1903
        • Boon P.
        • Vonck K.
        • De Herdt V.
        • et al.
        Deep brain stimulation in patients with refractory temporal lobe epilepsy.
        Epilepsia. 2007; 48: 1551-1560
        • Tellez-Zenteno J.F.
        • McLachlan R.S.
        • Parrent A.
        • Kubu C.S.
        • Wiebe S.
        Hippocampal electrical stimulation in mesial temporal lobe epilepsy.
        Neurology. 2006 May; 66: 1490-1494
        • Lian J.
        • Bikson M.
        • Sciortino C.
        • Stacey W.C.
        • Durand D.M.
        Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro.
        J Physiol. 2003; 547: 427-434
        • McIntyre C.C.
        • Grill W.M.
        • Sherman D.L.
        • Thakor N.V.
        Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
        J Neurophysiol. 2004; 91: 1457-1469
        • Beurrier C.
        • Bioulac B.
        • Audin J.
        • Hammond C.
        High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons.
        J Neurophysiol. 2001; 85: 1351-1356
        • Schiller Y.
        • Bankirer Y.
        Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro.
        J Neurophysiol. 2007; 97: 1887-1902
        • Boyden E.S.
        • Zhang F.
        • Bamberg E.
        • Nagel G.
        • Deisseroth K.
        Millisecond-timescale, genetically targeted optical control of neural activity.
        Nat Neurosci. 2005; 8: 1263-1268
        • Nagel G.
        Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
        Proc Natl Acad Sci U S A. 2003; 100: 13940-13945
        • Schobert B.
        • Lanyi J.K.
        Halorhodopsin is a light-driven chloride pump.
        J Biol Chem. 1982; 257: 306-313
        • Zhang F.
        • Wang L.-P.
        • Brauner M.
        • et al.
        Multimodal fast optical interrogation of neural circuitry.
        Nature. 2007; 446: 633-639
        • Kokaia M.
        • Andersson M.
        • Ledri M.
        An optogenetic approach in epilepsy.
        Neuropharmacology. 2013; 69: 89-95
        • Tonnesen J.
        • Sorensen A.T.
        • Deisseroth K.
        • Lundberg C.
        • Kokaia M.
        Optogenetic control of epileptiform activity.
        Proc Natl Acad Sci U S A. 2009; 106: 12162-12167
        • Wykes R.C.
        • Heeroma J.H.
        • Mantoan L.
        • et al.
        Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy.
        Sci Transl Med. 2012; 4: 161ra52
        • Paz J.T.
        • Davidson T.J.
        • Frechette E.S.
        • et al.
        Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury.
        Nat Neurosci. 2013; 16: 64-70
        • Krook-Magnuson E.
        • Armstrong C.
        • Oijala M.
        • Soltesz I.
        On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy.
        Nat Commun. 2013; 4: 1376
        • Arenkiel B.R.
        • Peca J.
        • Davison I.G.
        • et al.
        In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2.
        Neuron. 2007; 54: 205-218
        • Noebels J.L.
        • Avoli M.
        • Rogawski M.A.
        • Olsen R.W.
        • Delgado-Escueta A.V.
        Jasper's basic mechanisms of the epilepsies.
        4th ed. National Center for Biotechnology Information, Bethesda2012
        • Luna-Munguía H.
        • Meneses A.
        • Peña-Ortega F.
        • Gaona A.
        • Rocha L.
        Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.
        Hippocampus. 2012; 22: 98-105
        • Luna-Munguia H.
        • Orozco-Suarez S.
        • Rocha L.
        Effects of high frequency electrical stimulation and R-verapamil on seizure susceptibility and glutamate and GABA release in a model of phenytoin-resistant seizures.
        Neuropharmacology. 2011; 61: 807-814
        • Chang B.S.
        • Lowenstein D.H.
        Mechanisms of disease – Epilepsy.
        N Engl J Med. 2003 Sep; 349: 1257-1266
        • Li X.G.
        • Somogyi P.
        • Ylinen A.
        • Buzsaki G.
        The hippocampal CA3 network- an in-vivo intracellular labeling study.
        J Comp Neurol. 1994 Jan; 339: 181-208
        • Sik A.
        • Penttonen M.
        • Ylinen A.
        • Buzsaki G.
        Hippocampal CA1 interneurons- an in-vivo intracellular labelling study.
        J Neurosci. 1995 Oct; 15: 6651-6665
        • Ledri M.
        • Madsen M.G.
        • Nikitidou L.
        • Kirik D.
        • Kokaia M.
        Global optogenetic activation of inhibitory interneurons during epileptiform activity.
        J Neurosci. 2014; 34: 3364-3377
        • Berglind F.
        • Ledri M.
        • Sørensen A.T.
        • et al.
        Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.
        Neurobiol Dis. 2014; 65: 133-141
        • Ruiz A.
        • Fabian-Fine R.
        • Scott R.
        • Walker M.C.
        • Rusakov D.A.
        • Kullmann D.M.
        GABA(A) receptors at hippocampal mossy fibers.
        Neuron. 2003 Sep; 39: 961-973
        • Jackson M.B.
        • Zhang S.L.J.
        Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals.
        J Physiol. 1995 Mar; 483: 597-611
        • Zappone C.A.
        • Sloviter R.S.
        Commissurally projecting inhibitory interneurons of the rat hippocampal dentate gyrus: a colocalization study of neuronal markers and the retrograde tracer fluoro-gold.
        J Comp Neurol. 2001; 441: 324-344
        • Gloveli T.
        • Dugladze T.
        • Rotstein H.G.
        • et al.
        Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus.
        Proc Natl Acad Sci U S A. 2005; 102: 13295-13300
        • Wright R.
        • Raimondo J.V.
        • Akerman C.J.
        Spatial and temporal dynamics in the ionic driving force for GABAA receptors.
        Neural Plast. 2011; 2011: 1-10
        • Andersen P.
        • Dingledine R.
        • Gjerstad L.
        • Langmoen I.A.
        • Laursen A.M.
        Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric-acid.
        J Physiol. 1980; 305: 279-296
        • Alger B.E.
        • Nicoll R.A.
        Gaba-mediated biphasic inhibitory responses in hippocampus.
        Nature. 1979; 281: 315-317
        • Thompson S.M.
        • Gahwiler B.H.
        Activity-dependent disinhibition. II. effects of extracellular potassium, furosemide, and membrane potential on ECL- in hippocampal CA3 neurons.
        J Neurophysiol. 1989 Mar; 61: 512-523
        • Lamsa K.
        • Taira T.
        Use-dependent shift from inhibitory to excitatory GABA(A) receptor action in SP-O interneurons in the rat hippocampal CA3 area.
        J Neurophysiol. 2003 Sep; 90: 1983-1995
        • Raimondo J.V.
        • Kay L.
        • Ellender T.J.
        • Akerman C.J.
        Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission.
        Nat Neurosci. 2012; 15: 1102-1104
        • Zhang Z.J.
        • Koifman J.
        • Shin D.S.
        • et al.
        Transition to Seizure: Ictal discharge is preceded by exhausted presynaptic GABA release in the hippocampal CA3 region.
        J Neurosci. 2012; 32: 2499-2512
        • Ziburkus J.
        Interneuron and pyramidal cell interplay during in vitro seizure-like events.
        J Neurophysiol. 2006; 95: 3948-3954
        • Staley K.J.
        • Proctor W.R.
        Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport.
        J Physiol. 1999 Sep; 519: 693-712
        • Ouanounou A.
        • Carlen P.L.
        • El-Beheiry H.
        Enhanced isoflurane suppression of excitatory synaptic transmission in the aged rat hippocampus.
        Br J Pharmacol. 1998 Jul; 124: 1075-1082
        • Isaeva E.V.
        Effects of isoflurane on hippocampal seizures at immature rats in vivo.
        Fiziol Zh. 2008; 54: 40-45
        • Cardin J.A.
        • Carlén M.
        • Meletis K.
        • et al.
        Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2.
        Nat Protoc. 2010; 5: 247-254
        • Yizhar O.
        • Fenno Lief E.
        • Davidson Thomas J.
        • Mogri M.
        • Deisseroth K.
        Optogenetics in neural systems.
        Neuron. 2011; 71: 9-34