Advertisement
Transcranial Direct Current Stimulation (tDCS)/Transcranial Alternating Current Stimulation (tACS) Original Article| Volume 7, ISSUE 6, P807-812, November 2014

Download started.

Ok

Electroencephalographic Effects of Transcranial Random Noise Stimulation in the Auditory Cortex

Published:August 26, 2014DOI:https://doi.org/10.1016/j.brs.2014.08.007

      Highlights

      • This is the first study of tRNS over the auditory cortex.
      • Auditory cortex tRNS is capable in modulating EEG activity.
      • Power of auditory steady-state response was increased.

      Abstract

      Background

      Transcranial random noise stimulation (tRNS) is an innovative technique of non-invasive electrical stimulation. tRNS over the parietal cortex has improved cognitive function in healthy controls and, applied to the auditory cortex, tRNS has shown beneficial effects on tinnitus.

      Objective/hypothesis

      Here we aimed to investigate the effects of tRNS over the auditory cortex on resting state and evoked activity in healthy subjects.

      Methods

      We used EEG to measure tRNS induced changes in resting state activity and in auditory steady state responses (ASSRs). Stimuli were 1000 Hz carrier frequency tones, amplitude modulated at 20 Hz and 40 Hz and applied in randomized order. Fourteen subjects participated in a placebo-controlled randomized design study; each received 20 min of tRNS applied over auditory cortices with 2 mA, with a one week interval between real and sham stimulation.

      Results

      We found a significant increase in the ASSR in response to 40 Hz frequency modulated tone and a non-significant trend toward an increase in mean theta band power and variability of the theta band power for the resting state data.

      Conclusions

      Our finding of tRNS induced increased excitability in the auditory cortex parallels previous findings of tRNS effects on motor cortex excitability and is in line with current concepts of tRNS mechanisms such as increase of stochastic resonance.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Zaehle T.
        • Beretta M.
        • Jancke L.
        • Herrmann C.S.
        • Sandmann P.
        Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence.
        Exp Brain Res. 2011; 215: 135-140
        • Kuo M.F.
        • Nitsche M.A.
        Effects of transcranial electrical stimulation on cognition.
        Clin EEG Neurosci. 2012; 43: 192-199
        • Antal A.
        • Paulus W.
        Transcranial alternating current stimulation (tACS).
        Front Hum Neurosci. 2013; 7: 317
        • Alonzo A.
        • Chan G.
        • Martin D.
        • Mitchell P.B.
        • Loo C.
        Transcranial direct current stimulation (tDCS) for depression: analysis of response using a three-factor structure of the Montgomery-Asberg depression rating scale.
        J Affect Disord. 2013; 150: 91-95
        • Agarwal S.M.
        • Shivakumar V.
        • Bose A.
        • et al.
        Transcranial direct current stimulation in schizophrenia.
        Clin Psychopharmacol Neurosci. 2013; 11: 118-125
        • Brittain J.S.
        • Probert-Smith P.
        • Aziz T.Z.
        • Brown P.
        Tremor suppression by rhythmic transcranial current stimulation.
        Curr Biol. 2013; 23: 436-440
        • Vanneste S.
        • Fregni F.
        • De Ridder D.
        Head-to-Head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus.
        Front Psychiatry. 2013; 4: 158
        • Freeman D.K.
        • Eddington D.K.
        • Rizzo 3rd, J.F.
        • Fried S.I.
        Selective activation of neuronal targets with sinusoidal electric stimulation.
        J Neurophysiol. 2010; 104: 2778-2791
        • Krause B.
        • Cohen Kadosh R.
        Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation.
        Front Syst Neurosci. 2014; 8: 25
        • Terney D.
        • Chaieb L.
        • Moliadze V.
        • Antal A.
        • Paulus W.
        Increasing human brain excitability by transcranial high-frequency random noise stimulation.
        J Neurosci. 2008; 28: 14147-14155
        • Moliadze V.
        • Atalay D.
        • Antal A.
        • Paulus W.
        Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities.
        Brain Stimul. 2012; 5: 505-511
        • Chaieb L.
        • Paulus W.
        • Antal A.
        Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability.
        Neural Plast. 2011; 2011: 105927
        • Laczo B.
        • Antal A.
        • Rothkegel H.
        • Paulus W.
        Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
        Restor Neurol Neurosci. 2014; 32: 403-410
        • Snowball A.
        • Tachtsidis I.
        • Popescu T.
        • et al.
        Long-term enhancement of brain function and cognition using cognitive training and brain stimulation.
        Curr Biol. 2013; 23: 987-992
        • Fertonani A.
        • Pirulli C.
        • Miniussi C.
        Random noise stimulation improves neuroplasticity in perceptual learning.
        J Neurosci. 2011; 31: 15416-15423
        • Saiote C.
        • Polania R.
        • Rosenberger K.
        • Paulus W.
        • Antal A.
        High-frequency TRNS reduces BOLD activity during visuomotor learning.
        PLoS One. 2013; 8: e59669
        • Ho K.A.
        • Taylor J.L.
        • Loo C.K.
        Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability.
        J ECT. 2014; ([Epub ahead of print])
        • Chan H.N.
        • Alonzo A.
        • Martin D.M.
        • Player M.
        • Mitchell P.B.
        • Sachdev P.
        • et al.
        Treatment of major depressive disorder by transcranial random noise stimulation: case report of a novel treatment.
        Biol Psychiatry. 2012; 72: e9-e10
        • Palm U.
        • Hasan A.
        • Keeser D.
        • Falkai P.
        • Padberg F.
        Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia.
        Schizophr Res. 2013; 146: 372-373
        • Alm P.A.
        • Dreimanis K.
        Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment.
        J Pain Res. 2013; 6: 479-486
        • Oldfield R.C.
        The assessment and analysis of handedness: the Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Lehrl S.
        Mehrfachwahl-wortschatz-intelligenztest MWT-B.
        Spitta Verlag, Balingen2005
        • Oostenveld R.
        • Fries P.
        • Maris E.
        • Schoffelen J.M.
        FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
        Comput Intell Neurosci. 2011; 2011: 156869
        • Burkard R.F.
        • Don M.
        • Eggermont J.J.
        Auditory evoked potentials. Basic principles and clinical applications.
        Lippincott Williams & Wilkins, 2007
        • Bakeman R.
        Recommended effect size statistics for repeated measures designs.
        Behav Res Methods. 2005; 37: 379-384
        • Muller N.
        • Schlee W.
        • Hartmann T.
        • Lorenz I.
        • Weisz N.
        Top-down modulation of the auditory steady-state response in a task-switch paradigm.
        Front Hum Neurosci. 2009; 3: 1
        • Ahlfors S.P.
        • Han J.
        • Lin F.H.
        • et al.
        Cancellation of EEG and MEG signals generated by extended and distributed sources.
        Hum Brain Mapp. 2010; 31: 140-149
        • Shaw M.E.
        • Hamalainen M.S.
        • Gutschalk A.
        How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields.
        Neuroimage. 2013; 74: 22-29
        • Neuling T.
        • Wagner S.
        • Wolters C.H.
        • Zaehle T.
        • Herrmann C.S.
        Finite-element model predicts current density distribution for clinical applications of tDCS and tACS.
        Front Psychiatry. 2012; 3: 83
        • Rosanova M.
        • Casali A.
        • Bellina V.
        • Resta F.
        • Mariotti M.
        • Massimini M.
        Natural frequencies of human corticothalamic circuits.
        J Neurosci. 2009; 29: 7679-7685
        • Weisz N.
        • Luchinger C.
        • Thut G.
        • Muller N.
        Effects of individual alpha rTMS applied to the auditory cortex and its implications for the treatment of chronic tinnitus.
        Hum Brain Mapp. 2014; 35: 14-29
        • Llinas R.R.
        • Ribary U.
        • Jeanmonod D.
        • Kronberg E.
        • Mitra P.P.
        Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography.
        Proc Natl Acad Sci U S A. 1999; 96: 15222-15227
        • De Ridder D.
        • van der Loo E.
        • Vanneste S.
        • et al.
        Theta-gamma dysrhythmia and auditory phantom perception.
        J Neurosurg. 2011; 114: 912-921
        • Weisz N.
        • Steidle L.
        • Lorenz I.
        Formerly known as inhibitory: effects of 1-Hz rTMS on auditory cortex are state-dependent.
        Eur J Neurosci. 2012; 36: 2077-2087
        • Tass P.A.
        • Popovych O.V.
        Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling.
        Biol Cybern. 2012; 106: 27-36
        • Weisz N.
        • Moratti S.
        • Meinzer M.
        • Dohrmann K.
        • Elbert T.
        Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography.
        PLoS Med. 2005; 2: e153