Advertisement
Transcranial Direct Current Stimulation (tDCS)/Transcranial Alternating Current Stimulation (tACS) Original Article| Volume 7, ISSUE 6, P832-835, November 2014

Download started.

Ok

Mitigating Cutaneous Sensation Differences During tDCS: Comparing Sham Versus Low Intensity Control Conditions

  • Tad T. Brunyé
    Correspondence
    Corresponding author. US Army NSRDEC, RDNS-SEW-THC, 15 Kansas St., Natick, MA 01760, USA. Tel.: +1 617 306 6262.
    Affiliations
    US. Army Natick Soldier Research, Development, and Engineering Center, RDNS-SEW-THC, 15 Kansas St., Natick, MA, USA

    Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA
    Search for articles by this author
  • Julie Cantelon
    Affiliations
    US. Army Natick Soldier Research, Development, and Engineering Center, RDNS-SEW-THC, 15 Kansas St., Natick, MA, USA

    Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA
    Search for articles by this author
  • Amanda Holmes
    Affiliations
    US. Army Natick Soldier Research, Development, and Engineering Center, RDNS-SEW-THC, 15 Kansas St., Natick, MA, USA

    Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA
    Search for articles by this author
  • Holly A. Taylor
    Affiliations
    Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA
    Search for articles by this author
  • Caroline R. Mahoney
    Affiliations
    US. Army Natick Soldier Research, Development, and Engineering Center, RDNS-SEW-THC, 15 Kansas St., Natick, MA, USA

    Tufts University, Department of Psychology, 490 Boston Ave., Medford, MA, USA
    Search for articles by this author
Published:September 26, 2014DOI:https://doi.org/10.1016/j.brs.2014.09.015

      Abstract

      Background

      Cutaneous sensations at electrode sites during the administration of direct current brain stimulation may inadvertently influence participants' subjective experience and task performance.

      Objective

      The present study evaluated the utility of a methodological variation that substitutes sham administration with very low intensity (0.5 mA) current delivery.

      Methods

      We used a 4 × 1 high-definition ring electrode transcranial direct current (HD-tDCS) system to target the left dorsolateral prefrontal cortex (Brodmann's Area 9). Four stimulation conditions were compared in a repeated-measures design: sham 2.0 mA and 0.5 mA intensity, versus active 2.0 mA and 0.5 mA intensity. During stimulation participants performed a cognitive interference task that activates the cingulo-frontal-parietal network, and periodically provided perceived sensation ratings.

      Results

      We demonstrate that a relatively low intensity control condition attenuates otherwise large differences in perceived sensation between active and sham conditions. Critically, behavioral task differences maintained between the two active conditions.

      Conclusion

      A low intensity control stimulation condition may prove a viable methodological alternative to conventional sham techniques used in repeated-measures designs, though important limitations are discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Jacobson L.
        • Koslowsky M.
        • Lavidor M.
        tDCS polarity effects in motor and cognitive domains: a meta-analytical review.
        Exp Brain Res. 2012; 216: 1-10https://doi.org/10.1007/s00221-011-2891-9
        • Beeli G.
        • Casutt G.
        • Baumgartner T.
        • Jäncke L.
        Modulating presence and impulsiveness by external stimulation of the brain.
        Behav Brain Funct. 2008; 4: 33https://doi.org/10.1186/1744-9081-4-33
        • Ditye T.
        • Jacobson L.
        • Walsh V.
        • Lavidor M.
        Modulating behavioral inhibition by tDCS combined with cognitive training.
        Exp Brain Res. 2012; 219: 363-368https://doi.org/10.1007/s00221-012-3098-4
        • Hsu T.-Y.
        • Tseng L.-Y.
        • Yu J.-X.
        • et al.
        Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.
        Neuroimage. 2011; 56: 2249-2257https://doi.org/10.1016/j.neuroimage.2011.03.059
        • Jacobson L.
        • Javitt D.C.
        • Lavidor M.
        Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus.
        J Cogn Neurosci. 2011; 23: 3380-3387https://doi.org/10.1162/jocn_a_00020
        • Kirk R.
        Experimental design.
        Cole Publishing Company, Monterey, CA1982
        • Orne M.T.
        Demand characteristics and the concept of quasi-controls.
        in: Rosenthal R. Rosnow R. Artifact in behavioral research. Academic Press, New York, NY1969: 143-179
        • Minhas P.
        • Datta A.
        • Bikson M.
        Cutaneous perception during tDCS: role of electrode shape and sponge salinity.
        Clin Neurophysiol. 2011; 122: 637-638https://doi.org/10.1016/j.clinph.2010.09.023
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
        • Fecteau S.
        • Knoch D.
        • Fregni F.
        • Sultani N.
        • Boggio P.
        • Pascual-Leone A.
        Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study.
        J Neurosci. 2007; 27: 12500-12505https://doi.org/10.1523/JNEUROSCI.3283-07.2007
        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850https://doi.org/10.1016/j.clinph.2005.12.003
        • Hummel F.
        • Cohen L.G.
        Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke.
        Neurorehabil Neural Repair. 2005; 19: 14-19https://doi.org/10.1177/1545968304272698
        • Poreisz C.
        • Boros K.
        • Antal A.
        • Paulus W.
        Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients.
        Brain Res Bull. 2007; 72: 208-214https://doi.org/10.1016/j.brainresbull.2007.01.004
        • Borckardt J.J.
        • Bikson M.
        • Frohman H.
        • et al.
        A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception.
        J Pain. 2012; 13: 112-120https://doi.org/10.1016/j.jpain.2011.07.001
        • Ambrus G.G.
        • Paulus W.
        • Antal A.
        Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS.
        Clin Neurophysiol. 2010; 121: 1908-1914https://doi.org/10.1016/j.clinph.2010.04.020
        • Ziemann U.
        • Paulus W.
        • Nitsche M.A.
        • et al.
        Consensus: motor cortex plasticity protocols.
        Brain Stimul. 2008; 1: 164-182https://doi.org/10.1016/j.brs.2008.06.006
        • Hecht D.
        • Walsh V.
        • Lavidor M.
        Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task.
        J Neurosci. 2010; 30: 4241-4245https://doi.org/10.1523/JNEUROSCI.2924-09.2010
        • Metuki N.
        • Sela T.
        • Lavidor M.
        Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex.
        Brain Stimul. 2012; 5: 110-115https://doi.org/10.1016/j.brs.2012.03.002
        • Marshall L.
        • Mölle M.
        • Hallschmid M.
        • Born J.
        Transcranial direct current stimulation during sleep improves declarative memory.
        J Neurosci. 2004; 24: 9985-9992https://doi.org/10.1523/JNEUROSCI.2725-04.2004
        • Datta A.
        • Bansal V.
        • Diaz J.
        • Patel J.
        • Reato D.
        • Bikson M.
        Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad.
        Brain Stimul. 2009; 2 (201–207.e1)
        • Dmchowski J.
        • Datta A.
        • Bikson M.
        • Su Y.
        • Parra L.
        Optimized multi-electrode stimulation increases focality and intensity at target.
        J Neural Eng. 2011; 8: 046011
        • Bush G.
        • Shin L.M.
        The Multi-Source Interference Task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network.
        Nat Protoc. 2006; 1: 308-313https://doi.org/10.1038/nprot.2006.48
        • Bush G.
        • Shin L.M.
        • Holmes J.
        • Rosen B.R.
        • Vogt B.A.
        The Multi-Source Interference Task: validation study with fMRI in individual subjects.
        Mol Psychiatry. 2003; 8: 60-70https://doi.org/10.1038/sj.mp.4001217
        • Clark V.P.
        • Coffman B.A.
        • Mayer A.R.
        • et al.
        TDCS guided using fMRI significantly accelerates learning to identify concealed objects.
        Neuroimage. 2012; 59: 117-128https://doi.org/10.1016/j.neuroimage.2010.11.036
        • Dundas J.E.
        • Thickbroom G.W.
        • Mastaglia F.L.
        Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes.
        Clin Neurophysiol. 2007; 118: 1166-1170
        • Richardson J.D.
        • Fillmore P.
        • Datta A.
        • Truong D.
        • Bikson M.
        • Fridriksson J.
        Toward development of sham protocols for high-definition transcranial direct current stimulation (HD-tDCS).
        NeuroRegulation. 2014; 1: 62-72https://doi.org/10.15540/nr.1.1.62
        • Jaberzadeh S.
        • Bastani A.
        • Zoghi M.
        Anodal transcranial pulsed current stimulation: a novel technique to enhance corticospinal excitability.
        Clin Neurophysiol. 2014; 125: 344-351https://doi.org/10.1016/j.clinph.2013.08.025
        • Brunye T.T.
        • Holmes A.
        • Cantelon J.
        • et al.
        Direct current brain stimulation enhances navigation efficiency in individuals with low spatial sense of direction.
        Neuroreport. 2014; 25: 1175-1179https://doi.org/10.1097/WNR.0000000000000214