Advertisement

Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS)

Published:January 16, 2015DOI:https://doi.org/10.1016/j.brs.2015.01.400

      Highlights

      • Of 42 replicated cognitive outcome measures included in 59 analyses, tDCS has a significant effect on zero.
      • There appears to be no reliable effect of tDCS on executive function, language, memory, or miscellaneous measures.
      • Single-session tDCS does not appear to generate reliable cognitive effect in healthy populations.

      Abstract

      Background

      Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult populations (especially working memory and language production), the paradigms utilized and results reported in the literature are extremely variable. To address this, we conduct the largest quantitative review of the cognitive data to date.

      Methods

      Single-session tDCS data in healthy adults (18–50) from every cognitive outcome measure reported by at least two different research groups in the literature was collected. Outcome measures were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were generated for included studies and pooled for each analysis.

      Results

      Of the 59 analyses conducted, tDCS was found to not have a significant effect on any – regardless of inclusion laxity. This includes no effect on any working memory outcome or language production task.

      Conclusion

      Our quantitative review does not support the idea that tDCS generates a reliable effect on cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for this tool in cognitive research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Horvath J.C.
        • Forte J.D.
        • Carter O.
        Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review.
        Neuropsychologia. 2015; 66: 213-236
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Stagg C.J.
        • Nitsche M.A.
        Physiological basis of transcranial direct current stimulation.
        Neuroscientist. 2011; 17: 37-53
        • Elliott R.
        Executive functions and their disorders.
        Br Med Bull. 2003; 65: 49-59
        • Kiesel A.
        • Steinhauser M.
        • Wendt M.
        • et al.
        Control and interference in task switching—a review.
        Psychol Bull. 2010; 136: 849-874
        • Verbruggen F.
        • Logan G.D.
        Response inhibition in the stop-signal paradigm.
        Trends Cogn Sci. 2008; 12: 418-424
        • Macleod C.M.
        Half a Century of research on the Stroop effect – an integrative review.
        Psychol Bull. 1991; 109: 163-203
        • Evans V.
        • Green M.
        Cognitive linguistics: an introduction.
        Edinburgh University Press, Edinburgh2006
        • Breitenstein C.
        • Knecht S.
        Development and validation of a language learning model for behavioral and functional-imaging studies.
        J Neurosci Methods. 2002; 114: 173-179
        • Johnson C.J.
        • Paivio A.
        • Clark J.M.
        Cognitive components of picture naming.
        Psychol Bull. 1996; 120: 113-139
        • Costafreda S.G.
        • Fu C.H.
        • Lee L.
        • Everitt B.
        • Brammer M.J.
        • David A.S.
        A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus.
        Hum Brain Mapp. 2006; 27: 799-810
        • Anderson J.R.
        Learning and memory.
        John Wiley & Sons, Inc, New Jersey2000
        • Conway A.R.
        • Kane M.J.
        • Bunting M.F.
        • Hambrick D.Z.
        • Wilhelm O.
        • Engle R.W.
        Working memory span tasks: a methodological review and user's guide.
        Psychon Bull Rev. 2005; 12: 769-786
        • Tulving E.
        Episodic memory: from mind to brain.
        Annu Rev Psychol. 2002; 53: 1-25
        • Sternberg S.
        Memory-scanning: mental processes revealed by reaction-time experiments.
        Am Sci. 1969; 57: 421-457
        • Kane M.J.
        • Conway A.R.
        • Miura T.K.
        • Colflesh G.J.
        Working memory, attention control, and the N-back task: a question of construct validity.
        J Exp Psychol Learn Mem Cogn. 2007; 33: 615-622
        • Ashcraft M.H.
        Cognitive arithmetic: a review of data and theory.
        Cognition. 1992; 44: 75-106
        • Olofsson J.K.
        • Nordin S.
        • Sequeira H.
        • Polich J.
        Affective picture processing: an integrative review of ERP findings.
        Biol Psychol. 2008; 77: 247-265
        • Buelow M.T.
        • Suhr J.A.
        Construct validity of the Iowa gambling task.
        Neuropsychol Rev. 2009; 19: 102-114
        • Lejuez C.W.
        • Read J.P.
        • Kahler C.W.
        • et al.
        Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART).
        J Exp Psychol Appl. 2002; 8: 75-84
        • Smith J.M.
        • Alloy L.B.
        A roadmap to rumination: a review of the definition, assessment, and conceptualization of this multifaceted construct.
        Clin Psychol Rev. 2009; 29: 116-128
        • Gieryn T.F.
        The ballad of Pons and Fleischmann: experiment and narrative in the (un)making of cold fusion.
        in: McMullin E. The social dimensions of science. University of Notre Dame Press, Indiana1992
        • Mobley A.
        • Linder S.K.
        • Braeuer R.
        • Ellis L.M.
        • Zwelling L.
        A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic.
        PLoS One. 2013; 8: e63221
        • Osherovich L.
        Doubts about tragretin in AD.
        SciBX. 2013; 6
        • Leite J.
        • Carvalho S.
        • Fregni F.
        • Gonçalves O.F.
        Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance.
        PLoS One. 2011; 6: e24140
        • Plewnia C.
        • Zwissler B.
        • Längst I.
        • Maurer B.
        • Giel K.
        • Krüger R.
        Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism.
        Cortex. 2013; 49: 1801-1807
        • Jacobson L.
        • Javitt D.C.
        • Lavidor M.
        Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus.
        J Cogn Neurosci. 2011; 23: 3380-3387
        • Ditye T.
        • Jacobson L.
        • Walsh V.
        • Lavidor M.
        Modulating behavioral inhibition by tDCS combined with cognitive training.
        Exp Brain Res. 2012; 219: 363-368
        • Leite J.
        • Carvalho S.
        • Fregni F.
        • Boggio P.S.
        • Gonçalves Ó.F.
        The effects of cross-hemispheric dorsolateral prefrontal cortex transcranial direct current stimulation (tDCS) on task switching.
        Brain Stimul. 2013; 6: 660-667
        • Kwon J.W.
        • Nam S.H.
        • Lee N.K.
        • Son S.M.
        • Choi Y.W.
        • Kim C.S.
        The effect of transcranial direct current stimulation on the motor suppression in stop-signal task.
        NeuroRehabilitation. 2013; 32: 191-196
        • Reinhart R.M.
        • Woodman G.F.
        Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning.
        J Neurosci. 2014; 34: 4214-4227
        • Hsu T.Y.
        • Tseng L.Y.
        • Yu J.X.
        • Kuo W.J.
        Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.
        Neuroimage. 2011; 56: 2249-2257
        • Kwon Y.H.
        • Kwon J.W.
        Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex.
        J Phys Ther Sci. 2013; 25: 1083-1086
        • Liang W.K.
        • Lo M.T.
        • Yang A.C.
        • et al.
        Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy.
        Neuroimage. 2014; 90: 218-234
        • Fecteau S.
        • Pascual-Leone A.
        • Zald D.H.
        • et al.
        Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making.
        J Neurosci. 2007; 27: 6212-6218
        • Fecteau S.
        • Boggio P.
        • Fregni
        • Pascual-Leone A.
        Modulation of untruthful responses with non-invasive brain stimulation.
        Front Psychiatry. 2013; 3: 97
        • Jeon S.Y.
        • Han S.J.
        Improvement of the working memory and naming by transcranial direct current stimulation.
        Ann Rehabil Med. 2012; 36: 585-595
        • Kadosh R.C.
        • Soskic S.
        • Iuculano T.
        • Kanai R.
        • Walsh V.
        Modulating neuronal activity produces specific and long-lasting changes in numerical competence.
        Curr Biol. 2010; 20: 2016-2020
        • Richmond L.
        • Wolk D.
        • Chein J.
        • Olson I.R.
        Transcranial direct current stimulation enhances verbal working memory training performance over time and near-transfer outcomes.
        J Cogn Neurosci. 2014; 26: 2443-2454
        • Floel A.
        • Rösser N.
        • Michka O.
        • Knecht S.
        • Breitenstein C.
        Noninvasive brain stimulation improves language learning.
        J Cogn Neurosci. 2008; 20: 1415-1422
        • Fiori V.
        • Coccia M.
        • Marinelli C.V.
        • et al.
        Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects.
        J Cogn Neurosci. 2011; 23: 2309-2323
        • Fertonani A.
        • Rosini S.
        • Cotelli M.
        • Rossini P.M.
        • Miniussi C.
        Naming facilitation induced by transcranial direct current stimulation.
        Behav Brain Res. 2010; 208: 311-318
        • Wirth M.
        • Rahman R.A.
        • Kuenecke J.
        • et al.
        Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production.
        Neuropsychologia. 2011; 49: 3989-3998
        • Cerruti C.
        • Schlaug G.
        Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought.
        J Cogn Neurosci. 2009; 21: 1980-1987
        • Cattaneo Z.
        • Pisoni A.
        • Papagno C.
        Transcranial direct current stimulation over Broca's region improves phonemic and semantic fluency in healthy individuals.
        Neuroscience. 2011; 183: 64-70
        • Penolazzi B.
        • Pastore M.
        • Mondini S.
        Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency.
        Behav Brain Res. 2013; 248: 129-135
        • Meinzer M.
        • Lindenberg R.
        • Antonenko D.
        • Flaisch T.
        • Flöel A.
        Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.
        J Neurosci. 2013; 33: 12470-12478
        • Vannorsdall T.D.
        • Schretlen D.J.
        • Andrejczuk M.
        • et al.
        Altering automatic verbal processes with transcranial direct current stimulation.
        Front Psychiatry. 2012; 3: 73
        • Sparing R.
        • Dafotakis M.
        • Meister I.G.
        • Thirugnanasambandam N.
        • Fink G.R.
        Enhancing language performance with non-invasive brain stimulation–a transcranial direct current stimulation study in healthy humans.
        Neuropsychologia. 2008; 46: 261-268
        • Ross L.A.
        • McCoy D.
        • Wolk D.A.
        • Coslett H.B.
        • Olson I.R.
        Improved proper name recall by electrical stimulation of the anterior temporal lobes.
        Neuropsychologia. 2010; 48: 3671-3674
        • Meinzer M.
        • Antonenko D.
        • Lindenberg R.
        • et al.
        Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation.
        J Neurosci. 2012; 32: 1859-1866
        • Andrews S.C.
        • Hoy K.E.
        • Enticott P.G.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex.
        Brain Stimul. 2011; 4: 84-89
        • Mulquiney P.G.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex.
        Clin Neurophysiol. 2011; 122: 2384-2389
        • Gladwin T.E.
        • den Uyl T.E.
        • Wiers R.W.
        Anodal tDCS of dorsolateral prefontal cortex during an implicit association test.
        Neurosci Lett. 2012; 517: 82-86
        • Berryhill M.E.
        • Wencil E.B.
        • Coslett H.B.
        • Olson I.R.
        A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe.
        Neurosci Lett. 2010; 479: 312-316
        • Jones K.T.
        • Berryhill M.E.
        Parietal contributions to visual working memory depend on task difficulty.
        Front Psychiatry. 2012; 3: 81
        • Tseng P.
        • Hsu T.Y.
        • Chang C.F.
        • et al.
        Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals.
        J Neurosci. 2012; 32: 10554-10561
        • Hsu T.Y.
        • Tseng P.
        • Liang W.K.
        • Cheng S.K.
        • Juan C.H.
        Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task.
        Neuroimage. 2014; 98: 306-313
        • Tanoue R.T.
        • Jones K.T.
        • Peterson D.J.
        • Berryhill M.E.
        Differential frontal involvement in shifts of internal and perceptual attention.
        Brain Stimul. 2013; 6: 675-682
        • Hoy K.E.
        • Emonson M.R.
        • Arnold S.L.
        • Thomson R.H.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls.
        Neuropsychologia. 2013; 51: 1777-1784
        • Keeser D.
        • Padberg F.
        • Reisinger E.
        • et al.
        Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study.
        Neuroimage. 2011; 55: 644-657
        • Fregni F.
        • Boggio P.S.
        • Nitsche M.
        • et al.
        Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory.
        Exp Brain Res. 2005; 166: 23-30
        • Teo F.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls.
        Front Psychiatry. 2011; 2: 45
        • Ohn S.H.
        • Park C.I.
        • Yoo W.K.
        • et al.
        Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory.
        Neuroreport. 2008; 19: 43-47
        • Martin D.M.
        • Liu R.
        • Alonzo A.
        • et al.
        Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants.
        Int J Neuropsychopharmacol. 2013; 16: 1927-1936
        • Ferrucci R.
        • Marceglia S.
        • Vergari M.
        • et al.
        Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory.
        J Cogn Neurosci. 2008; 20: 1687-1697
        • Macher K.
        • Böhringer A.
        • Villringer A.
        • Pleger B.
        Cerebellar-parietal connections underpin phonological storage.
        J Neurosci. 2014; 34: 5029-5037
        • Hammer A.
        • Mohammadi B.
        • Schmicker M.
        • Saliger S.
        • Münte T.F.
        Errorless and errorful learning modulated by transcranial direct current stimulation.
        BMC Neurosci. 2011; 12: 72
        • Javadi A.H.
        • Walsh V.
        Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory.
        Brain Stimul. 2012; 5: 231-241
        • Bona S.
        • Silvanto J.
        Accuracy and confidence of visual short-term memory do not go hand-in-hand: behavioral and neural dissociations.
        PLoS One. 2014; 9: e90808
        • Zwissler B.
        • Sperber C.
        • Aigeldinger S.
        • Schindler S.
        • Kissler J.
        • Plewnia C.
        Shaping memory accuracy by left prefrontal transcranial direct current stimulation.
        J Neurosci. 2014; 34: 4022-4026
        • Chi R.P.
        • Fregni F.
        • Snyder A.W.
        Visual memory improved by non-invasive brain stimulation.
        Brain Res. 2010; 1353: 168-175
        • Schaal N.K.
        • Krause V.
        • Lange K.
        • Banissy M.J.
        • Williamson V.J.
        • Pollok B.
        Pitch memory in nonmusicians and musicians: revealing functional differences using transcranial direct current stimulation.
        Cereb Cortex. 2014;
        • Heimrath K.
        • Sandmann P.
        • Becke A.
        • Müller N.G.
        • Zaehle T.
        Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task.
        Front Psychiatry. 2012; 3: 56
        • Moos K.
        • Vossel S.
        • Weidner R.
        • Sparing R.
        • Fink G.R.
        Modulation of top-down control of visual attention by cathodal tDCS over right IPS.
        J Neurosci. 2012; 32: 16360-16368
        • Zaehle T.
        • Sandmann P.
        • Thorne J.D.
        • Jäncke L.
        • Herrmann C.S.
        Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence.
        BMC Neurosci. 2011; 12: 2
        • Lally N.
        • Nord C.L.
        • Walsh V.
        • Roiser J.P.
        Does excitatory fronto-extracerebral tDCS lead to improved working memory performance?.
        F1000Res. 2013; 2: 219
        • Javadi A.H.
        • Cheng P.
        • Walsh V.
        Short duration transcranial direct current stimulation (tDCS) modulates verbal memory.
        Brain Stimul. 2012; 5: 468-474
        • Gomes-Osman J.
        • Field-Fote E.C.
        Bihemispheric anodal corticomotor stimulation using transcranial direct current stimulation improves bimanual typing task performance.
        J Mot Behav. 2013; 45: 361-367
        • Motohashi N.
        • Yamaguchi M.
        • Fujii T.
        • Kitahara Y.
        Mood and cognitive function following repeated transcranial direct current stimulation in healthy volunteers: a preliminary report.
        Neurosci Res. 2013; 77: 64-69
        • Bolognini N.
        • Fregni F.
        • Casati C.
        • Olgiati E.
        • Vallar G.
        Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills.
        Brain Res. 2010; 1349: 76-89
        • Manenti R.
        • Brambilla M.
        • Petesi M.
        • Ferrari C.
        • Cotelli M.
        Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation.
        Front Aging Neurosci. 2013; 5: 49
        • Clemens B.
        • Jung S.
        • Zvyagintsev M.
        • Domahs F.
        • Willmes K.
        Modulating arithmetic fact retrieval: a single-blind, sham-controlled tDCS study with repeated fMRI measurements.
        Neuropsychologia. 2013; 51: 1279-1286
        • Hauser T.U.
        • Rotzer S.
        • Grabner R.H.
        • Mérillat S.
        • Jäncke L.
        Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial direct current stimulation (tDCS).
        Front Hum Neurosci. 2013; 7: 244
        • Boggio P.S.
        • Zaghi S.
        • Fregni F.
        Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS).
        Neuropsychologia. 2009; 47: 212-217
        • Pena-Gomez C.
        • Vidal-Piñeiro D.
        • Clemente I.C.
        • Pascual-Leone Á.
        • Bartrés-Faz D.
        Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics.
        PLoS One. 2011; 6: e22812
        • Brunoni A.R.
        • Vanderhasselt M.A.
        • Boggio P.S.
        • et al.
        Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol.
        Psychoneuroendocrinology. 2013; 38: 58-66
        • Feeser M.
        • Prehn K.
        • Kazzer P.
        • Mungee A.
        • Bajbouj M.
        Transcranial direct current stimulation enhances cognitive control during emotion regulation.
        Brain Stimul. 2014; 7: 105-112
        • Fecteau S.
        • Knoch D.
        • Fregni F.
        • Sultani N.
        • Boggio P.
        • Pascual-Leone A.
        Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study.
        J Neurosci. 2007; 27: 12500-12505
        • Minati L.
        • Campanha C.
        • Critchley H.D.
        • Boggio P.S.
        Effects of transcranial direct-current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) during a mixed-gambling risky decision-making task.
        Cogn Neurosci. 2012; 3: 80-88
        • Kelley N.J.
        • Hortensius R.
        • Harmon-Jones E.
        When anger leads to rumination: induction of relative right frontal cortical activity with transcranial direct current stimulation increases anger-related rumination.
        Psychol Sci. 2013; 24: 475-481
        • Vanderhasselt M.A.
        • Brunoni A.R.
        • Loeys T.
        • Boggio P.S.
        • De Raedt R.
        Nosce te ipsum–Socrates revisited? Controlling momentary ruminative self-referent thoughts by neuromodulation of emotional working memory.
        Neuropsychologia. 2013; 51: 2581-2589
        • Kasahara K.
        • Tanaka S.
        • Hanakawa T.
        • Senoo A.
        • Honda M.
        Lateralization of activity in the parietal cortex predicts the effectiveness of bilateral transcranial direct current stimulation on performance of a mental calculation task.
        Neurosci Lett. 2013; 545: 86-90
        • Maeoka H.
        • Matsuo A.
        • Hiyamizu M.
        • Morioka S.
        • Ando H.
        Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis.
        Neurosci Lett. 2012; 512: 12-16
        • Weber M.J.
        • Messing S.B.
        • Rao H.
        • Detre J.A.
        • Thompson-Schill S.L.
        Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.
        Hum Brain Mapp. 2014; 35: 3673-3686
        • Walker E.
        • Hernandez A.V.
        • Kattan M.W.
        Meta-analysis: Its strengths and limitations.
        Cleve Clin J Med. 2008; 75: 431-439
        • Silvanto J.
        • Muggleton N.
        • Walsh V.
        State-dependency in brain stimulation studies of perception and cognition.
        Trends Cogn Sci. 2008; 12: 447-454
        • Silvanto J.
        • Pascual-Leone A.
        State-dependency of transcranial magnetic stimulation.
        Brain Topogr. 2008; 21: 1-10
        • Quartarone A.
        • Morgante F.
        • Bagnato S.
        • et al.
        Long lasting effects of transcranial direct current stimulation on motor imagery.
        Neuroreport. 2004; 15: 1287-1291
        • Antal A.
        • Terney D.
        • Poreisz C.
        • Paulus W.
        Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex.
        Eur J Neurosci. 2007; 26: 2687-2691
        • Lang N.
        • Siebner H.R.
        • Ernst D.
        • et al.
        Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects.
        Biol Psychiatry. 2004; 56: 634-639
        • Batsikadze G.
        • Moliadze V.
        • Paulus W.
        • et al.
        Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.
        J Physiol. 2013; 591: 1987-2000
        • Rosenberg O.
        • Shoenfeld N.
        • Kotler M.
        • Dannon P.N.
        Mood disorders in elderly population: neurostimulative treatment possibilities.
        Recent Pat CNS Drug Discov. 2009; 4: 149-159
        • Berryhill M.E.
        • Jones K.T.
        tDCS selectively improves working memory in older adults with more education.
        Neurosci Lett. 2012; 521: 148-151
        • Kalu U.G.
        • Sexton C.E.
        • Loo C.K.
        • Ebmeier K.P.
        Transcranial direct current stimulation in the treatment of major depression: a meta-analysis.
        Psychol Med. 2012; 42: 1791-1800
        • Lima M.C.
        • Fregni F.
        Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature.
        Neurology. 2008; 70: 2329-2337
        • Butler A.J.
        • Shuster M.
        • O'Hara E.
        • Hurley K.
        • Middlebrooks D.
        • Guilkey K.
        A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors.
        J Hand Ther. 2013; 26 (quiz 171): 162-170
        • Schambra H.M.
        • Abe M.
        • Luckenbaugh D.A.
        • Reis J.
        • Krakauer J.W.
        • Cohen L.G.
        Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study.
        J Neurophysiol. 2011; 106: 652-661
        • Marshall L.
        • Kirov R.
        • Brade J.
        • Mölle M.
        • Born J.
        Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.
        PLoS One. 2011; 6: e16905
        • Reis J.
        • Schambra H.M.
        • Cohen L.G.
        • et al.
        Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
        Proc Natl Acad Sci U S A. 2009; 106: 1590-1595