Advertisement

Brain State-Dependent Transcranial Magnetic Closed-Loop Stimulation Controlled by Sensorimotor Desynchronization Induces Robust Increase of Corticospinal Excitability

Published:February 16, 2016DOI:https://doi.org/10.1016/j.brs.2016.02.007

      Highlights

      • Desynchronization of sensorimotor rhythmic activity may increase the instantaneous corticospinal excitability; the accumulative effect of cortical stimulation in conjunction with sensorimotor desynchronization is however unclear.
      • A brain–computer interface environment was used in conjunction with kinesthetic motor imagery to pair single-pulse transcranial magnetic stimulation with event-related desynchronization, i.e. to provide brain state-dependent stimulation in the absence of voluntary muscle contraction.
      • Already 300 pulses applied with this closed-loop approach were sufficient to induce robust increases of corticospinal excitability, while the same pattern and number of stimuli, when applied in the control condition independent of the brain state, resulted in a decrease of excitability.
      • These results could help developing new therapeutic approaches such as the application of brain state-dependent closed-loop stimulation in the context of neurorehabilitation.

      Abstract

      Background

      Desynchronization of sensorimotor rhythmic activity increases instantaneous corticospinal excitability, as indexed by amplitudes of motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS). The accumulative effect of cortical stimulation in conjunction with sensorimotor desynchronization is, however, unclear.

      Objective

      The aim of this study was to investigate the effects of repetitive pairing event-related desynchronization (ERD) with TMS of the precentral gyrus on corticospinal excitability.

      Methods

      Closed-loop single-pulse TMS was controlled by beta-band (16–22 Hz) ERD during motor-imagery of finger extension and applied within a brain–computer interface environment in eleven healthy subjects. The same number and pattern of stimuli were applied in a control group of eleven subjects during rest, i.e. independent of ERD. To probe for plasticity resistant to depotentiation, stimulation protocols were followed by a depotentiation task.

      Results

      Brain state-dependent application of approximately 300 TMS pulses during beta-ERD resulted in a significant increase of corticospinal excitability. By contrast, the identical stimulation pattern applied independent of beta-ERD in the control experiment resulted in a decrease of corticospinal excitability. These effects persisted beyond the period of stimulation and the depotentiation task.

      Conclusion

      These results could be instrumental in developing new therapeutic approaches such as the application of closed-loop stimulation in the context of neurorehabilitation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Ziemann U.
        • Paulus W.
        • Nitsche M.A.
        • Pascual-Leone A.
        • Byblow W.D.
        • Berardelli A.
        • et al.
        Consensus: motor cortex plasticity protocols.
        Brain Stimul. 2008; 1: 164-182
        • Hoogendam J.M.
        • Ramakers G.M.J.
        • Di Lazzaro V.
        Physiology of repetitive transcranial magnetic stimulation of the human brain.
        Brain Stimul. 2010; 3: 95-118
        • Salinas E.
        • Thier P.
        Gain modulation: a major computational principle of the central nervous system.
        Neuron. 2000; 27: 15-21
        • Chance F.S.
        • Abbott L.F.
        • Reyes A.D.
        Gain modulation from background synaptic input.
        Neuron. 2002; 35: 773-782
        • Thut G.
        • Miniussi C.
        New insights into rhythmic brain activity from TMS-EEG studies.
        Trends Cogn Sci. 2009; 13: 182-189
        • Jensen O.
        • Mazaheri A.
        Shaping functional architecture by oscillatory alpha activity: gating by inhibition.
        Front Hum Neurosci. 2010; 4: 186
        • Kiers L.
        • Cros D.
        • Chiappa K.H.
        • Fang J.
        Variability of motor potentials evoked by transcranial magnetic stimulation.
        Electroencephalogr Clin Neurophysiol. 1993; 89: 415-423
        • Thickbroom G.W.
        • Byrnes M.L.
        • Mastaglia F.L.
        A model of the effect of MEP amplitude variation on the accuracy of TMS mapping.
        Clin Neurophysiol. 1999; 110: 941-943
        • Darling W.G.
        • Wolf S.L.
        • Butler A.J.
        Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation.
        Exp Brain Res. 2006; 174: 376-385
        • Bergmann T.O.
        • Mölle M.
        • Schmidt M.A.
        • Lindner C.
        • Marshall L.
        • Born J.
        • et al.
        EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation.
        J Neurosci. 2012; 32: 243-253
        • Schulz H.
        • Ubelacker T.
        • Keil J.
        • Müller N.
        • Weisz N.
        Now I am ready–now I am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials.
        Cereb Cortex. 2013; 24: 1708-1719
        • Takemi M.
        • Masakado Y.
        • Liu M.
        • Ushiba J.
        Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.
        J Neurophysiol. 2013; 110: 1158-1166
        • Brinkman L.
        • Stolk A.
        • Dijkerman H.C.
        • de Lange F.P.
        • Toni I.
        Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions.
        J Neurosci. 2014; 34: 14783-14792
        • Kilavik B.E.
        • Zaepffel M.
        • Brovelli A.
        • MacKay W.A.
        • Riehle A.
        The ups and downs of beta oscillations in sensorimotor cortex.
        Exp Neurol. 2013; 245: 15-26
        • Van Wijk B.C.M.
        • Beek P.J.
        • Daffertshofer A.
        Neural synchrony within the motor system: what have we learned so far?.
        Front Hum Neurosci. 2012; 6: 252
        • Kristeva R.
        • Patino L.
        • Omlor W.
        Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
        Neuroimage. 2007; 36: 785-792
        • Mima T.
        • Steger J.
        • Schulman A.E.
        • Gerloff C.
        • Hallett M.
        Electroencephalographic measurement of motor cortex control of muscle activity in humans.
        Clin Neurophysiol. 2000; 111: 326-337
        • Aumann T.D.
        • Prut Y.
        Do sensorimotor Β-oscillations maintain muscle synergy representations in primary motor cortex?.
        Trends Neurosci. 2015; 38: 77-85
        • Naros G.
        • Gharabaghi A.
        Reinforcement learning of self-regulated Β-oscillations for motor restoration in chronic stroke.
        Front Hum Neurosci. 2015; 9: 391
        • Kraus D.
        • Naros G.
        • Bauer R.
        • Leão M.T.
        • Ziemann U.
        • Gharabaghi A.
        Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
        Neuroimage. 2016; 15: 522-532
        • Hess C.W.
        • Mills K.R.
        • Murray N.M.
        Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee.
        Neurosci Lett. 1986; 71: 235-240
        • Di Lazzaro V.
        • Restuccia D.
        • Oliviero A.
        • Profice P.
        • Ferrara L.
        • Insola A.
        • et al.
        Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans.
        J Physiol. 1998; 508: 625-633
        • Mitchell W.K.
        • Baker M.R.
        • Baker S.N.
        Muscle responses to transcranial stimulation in man depend on background oscillatory activity.
        J Physiol. 2007; 583: 567-579
        • Miller K.J.
        • Leuthardt E.C.
        • Schalk G.
        • Rao R.P.N.
        • Anderson N.R.
        • Moran D.W.
        • et al.
        Spectral changes in cortical surface potentials during motor movement.
        J Neurosci. 2007; 27: 2424-2432
        • Wolpaw J.R.
        • Birbaumer N.
        • McFarland D.J.
        • Pfurtscheller G.
        • Vaughan T.M.
        Brain-computer interfaces for communication and control.
        Clin Neurophysiol. 2002; 113: 767-791
        • Daly J.J.
        • Wolpaw J.R.
        Brain-computer interfaces in neurological rehabilitation.
        Lancet Neurol. 2008; 7: 1032-1043
        • Jensen O.
        • Bahramisharif A.
        • Oostenveld R.
        • Klanke S.
        • Hadjipapas A.
        • Okazaki Y.O.
        • et al.
        Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience.
        Front Psychol. 2011; 2: 100
        • Goldsworthy M.R.
        • Müller-Dahlhaus F.
        • Ridding M.C.
        • Ziemann U.
        Resistant against de-depression: LTD-like plasticity in the human motor cortex induced by spaced cTBS.
        Cerebral Cortex. 2014; 25: 1724-1734
        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        • The Safety of TMS Consensus Group
        Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin Neurophysiol. 2009; 120: 2008-2039
        • Oldfield R.C.
        The assessment and analysis of handedness: the Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Schalk G.
        • McFarland D.J.
        • Hinterberger T.
        • Birbaumer N.
        • Wolpaw J.R.
        BCI2000: a general-purpose brain-computer interface (BCI) system.
        IEEE Trans Biomed Eng. 2004; 51: 1034-1043
        • Groppa S.
        • Oliviero A.
        • Eisen A.
        • Quartarone A.
        • Cohen L.G.
        • Mall V.
        • et al.
        A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee.
        Clin Neurophysiol. 2012; 123: 858-882
        • Danner N.
        • Julkunen P.
        • Könönen M.
        • Säisänen L.
        • Nurkkala J.
        • Karhu J.
        Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold.
        J Neurosci Methods. 2008; 174: 116-122
        • Danner N.
        • Könönen M.
        • Säisänen L.
        • Laitinen R.
        • Mervaala E.
        • Julkunen P.
        Effect of individual anatomy on resting motor threshold-computed electric field as a measure of cortical excitability.
        J Neurosci Methods. 2012; 203: 298-304
        • Kraus D.
        • Gharabaghi A.
        Projecting navigated TMS sites on the gyral anatomy decreases inter-subject variability of cortical motor maps.
        Brain Stimul. 2015; 8: 831-837
        • Todd G.
        • Rogasch N.C.
        • Flavel S.C.
        • Ridding M.C.
        Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex.
        J Appl Physiol. 2009; 106: 1593-1603
        • Touge T.
        • Gerschlager W.
        • Brown P.
        • Rothwell J.C.
        Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?.
        Clin Neurophysiol. 2001; 112: 2138-2145
        • Gharabaghi A.
        • Kraus D.
        • Leão M.T.
        • Spüler M.
        • Walter A.
        • Bogdan M.
        • et al.
        Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation.
        Front Hum Neurosci. 2014; 8: 122
        • McFarland D.J.
        • Miner L.A.
        • Vaughan T.M.
        • Wolpaw J.R.
        Mu and beta rhythm topographies during motor imagery and actual movements.
        Brain Topogr. 2000; 12: 177-186
        • McFarland D.J.
        • Wolpaw J.R.
        Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.
        J Neural Eng. 2008; 5: 155-162
        • Naros G.
        • Gharabaghi A.
        Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke.
        Front Hum Neurosci. 2015; 9: 391
        • Walter A.
        • Ramos Murguialday A.
        • Spüler M.
        • Naros G.
        • Leão M.-T.
        • Gharabaghi A.
        • et al.
        Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects.
        Front Neural Circuits. 2012; 6: 87
        • Devanne H.
        • Lavoie B.A.
        • Capaday C.
        Input-output properties and gain changes in the human corticospinal pathway.
        Exp Brain Res. 1997; 114: 329-338
        • Houdayer E.
        • Degardin A.
        • Cassim F.
        • Bocquillon P.
        • Derambure P.
        • Devanne H.
        The effects of low- and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway.
        Exp Brain Res. 2008; 187: 207-217
        • Möller C.
        • Arai N.
        • Lücke J.
        • Ziemann U.
        Hysteresis effects on the input-output curve of motor evoked potentials.
        Clin Neurophysiol. 2009; 120: 1003-1008
        • Huber P.J.
        Robust statistics.
        John Wiley & Sons, Inc, Hoboken, NJ1981
        • Ridding M.C.
        • Rothwell J.C.
        Stimulus/response curves as a method of measuring motor cortical excitability in man.
        Electroencephalogr Clin Neurophysiol. 1997; 105: 340-344
        • Altman D.G.
        • Bland J.M.
        How to obtain the P value from a confidence interval.
        BMJ. 2011; 343: d2304
        • Lotze M.
        • Montoya P.
        • Erb M.
        • Hülsmann E.
        • Flor H.
        • Klose U.
        • et al.
        Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study.
        J Cogn Neurosci. 1999; 11: 491-501
        • Neuper C.
        • Scherer R.
        • Reiner M.
        • Pfurtscheller G.
        Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG.
        Brain Res Cogn Brain Res. 2005; 25 (E): 668-677
        • Pfurtscheller G.
        • Neuper C.
        Motor imagery activates primary sensorimotor area in humans.
        Neurosci Lett. 1997; 239: 65-68
        • Kaiser V.
        • Kreilinger A.
        • Müller-Putz G.R.
        • Neuper C.
        First steps toward a motor imagery based stroke BCI: new strategy to set up a classifier.
        Front Neurosci. 2011; 5: 86
        • Ridding M.C.
        • Rothwell J.C.
        Afferent input and cortical organisation: a study with magnetic stimulation.
        Exp Brain Res. 1999; 126: 536-544
        • Roosink M.
        • Zijdewind I.
        Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation.
        Behav Brain Res. 2010; 213: 35-41
        • Stinear C.M.
        • Byblow W.D.
        Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent.
        Exp Brain Res. 2004; 157: 351-358
        • Stinear C.M.
        • Byblow W.D.
        • Steyvers M.
        • Levin O.
        • Swinnen S.P.
        Kinesthetic, but not visual, motor imagery modulates corticomotor excitability.
        Exp Brain Res. 2006; 168: 157-164
        • Abbruzzese G.
        • Assini A.
        • Buccolieri A.
        • Marchese R.
        • Trompetto C.
        Changes of intracortical inhibition during motor imagery in human subjects.
        Neurosci Lett. 1999; 263: 113-116
        • Xu R.
        • Jiang N.
        • Mrachacz-Kersting N.
        • Lin C.
        • Asin Prieto G.
        • Moreno J.C.
        • et al.
        A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity.
        IEEE Trans Biomed Eng. 2014; 61: 2092-2101
        • Mrachacz-Kersting N.
        • Kristensen S.R.
        • Niazi I.K.
        • Farina D.
        Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity.
        J Physiol. 2012; 590: 1669-1682
        • Hebb D.O.
        The organization of behavior: a neuropsychological theory.
        Wiley, New York1949
        • Devanne H.
        • Cohen L.G.
        • Kouchtir-Devanne N.
        • Capaday C.
        Integrated motor cortical control of task-related muscles during pointing in humans.
        J Neurophysiol. 2002; 87: 3006-3017
        • Kouchtir-Devanne N.
        • Capaday C.
        • Cassim F.
        • Derambure P.
        • Devanne H.
        Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction.
        J Neurophysiol. 2012; 107: 1522-1529
        • Rösler K.M.
        • Roth D.M.
        • Magistris M.R.
        Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique.
        Exp Brain Res. 2008; 187: 51-59
        • Z'Graggen W.J.
        • Humm A.M.
        • Durisch N.
        • Magistris M.R.
        • Rösler K.M.
        Repetitive spinal motor neuron discharges following single transcranial magnetic stimuli: a quantitative study.
        Clin Neurophysiol. 2005; 116: 1628-1637
        • Rösler K.M.
        • Petrow E.
        • Mathis J.
        • Arányi Z.
        • Hess C.W.
        • Magistris M.R.
        Effect of discharge desynchronization on the size of motor evoked potentials: an analysis.
        Clin Neurophysiol. 2002; 113: 1680-1687
        • Magistris M.R.
        • Rösler K.M.
        • Truffert A.
        • Myers J.P.
        Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials.
        Brain. 1998; 121: 437-450
        • Di Lazzaro V.
        • Oliviero A.
        • Profice P.
        • Saturno E.
        • Pilato F.
        • Insola A.
        • et al.
        Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans.
        Electroencephalogr Clin Neurophysiol. 1998; 109: 397-401
        • Di Lazzaro V.
        • Ziemann U.
        • Lemon R.N.
        State of the art: physiology of transcranial motor cortex stimulation.
        Brain Stimul. 2008; 1: 345-362
        • Di Lazzaro V.
        • Profice P.
        • Ranieri F.
        • Capone F.
        • Dileone M.
        • Oliviero A.
        • et al.
        I-wave origin and modulation.
        Brain Stimul. 2012; 5: 512-525
        • Di Lazzaro V.
        • Pilato F.
        • Dileone M.
        • Profice P.
        • Oliviero A.
        • Mazzone P.
        • et al.
        Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.
        J Physiol. 2008; 586: 4481-4487
        • Di Lazzaro V.
        • Dileone M.
        • Profice P.
        • Pilato F.
        • Oliviero A.
        • Mazzone P.
        • et al.
        LTD-like plasticity induced by paired associative stimulation: direct evidence in humans.
        Exp Brain Res. 2009; 194: 661-664