Advertisement

On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability

Published:April 29, 2017DOI:https://doi.org/10.1016/j.brs.2017.04.129

      Highlights

      • Transient (2s) beta (18.5 Hz) tACS does not modulate episodic memory formation.
      • Transient beta tACS does not phasically modulate motor cortex excitability.
      • Transient beta tACS appears inefficient in entraining oscillations.

      Abstract

      Background

      Transcranial alternating current stimulation (tACS) is widely used to entrain or modulate brain oscillations in order to investigate causal relationships between oscillations and cognition.

      Objective

      In a series of experiments we here addressed the question of whether event-related, transient tACS in the beta frequency range can be used to entrain beta oscillations in two different domains: episodic memory formation and motor cortex excitability.

      Methods

      In experiments 1 and 2, 72 healthy human participants engaged in an incidental encoding task of verbal and non-verbal material while receiving tACS to the left and right inferior frontal gyrus (IFG) at 6.8 Hz, 10.7 Hz, 18.5 Hz, 30 Hz, 48 Hz and sham stimulation for 2s during stimulus presentation.
      In experiment 3, tACS was administered for 10s to M1 at the individual motor beta frequency of eight subjects. We investigated the relationship between the size of TMS induced MEPs and tACS phase.

      Results

      Beta tACS did not affect memory performance compared to sham stimulation in experiments 1 and 2. Likewise, in experiment 3, MEP size was not modulated by the tACS phase.

      Conclusions

      Our findings suggest that event-related, transient tACS in the beta frequency range cannot be used to modulate the formation of episodic memories or motor cortex excitability. These null-results question the effectiveness of event-related tACS to entrain beta oscillations and modulate cognition.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Fries P.
        A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.
        Trends Cogn Sci. 2005; 9: 474-480https://doi.org/10.1016/j.tics.2005.08.011
        • Hanslmayr S.
        • Staudigl T.
        • Fellner M.-C.
        Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis.
        Front Hum Neurosci. 2012; 6: 74https://doi.org/10.3389/fnhum.2012.00074
        • Brittain J.-S.
        • Brown P.
        Oscillations and the basal ganglia: motor control and beyond.
        Neuroimage. 2014; 85: 637-647https://doi.org/10.1016/j.neuroimage.2013.05.084
        • Kuhlman W.N.
        Functional topography of the human mu rhythm.
        Electroencephalogr Clin Neurophysiol. 1978; 44: 83-93https://doi.org/10.1016/0013-4694(78)90107-4
        • Pfurtscheller G.
        Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest.
        Electroencephalogr Clin Neurophysiol. 1992; 83: 62-69https://doi.org/10.1016/0013-4694(92)90133-3
        • Pfurtscheller G.
        • Neuper C.
        • Andrew C.
        • Edlinger G.
        Foot and hand area mu rhythms.
        Int J Psychophysiol. 1997; 26: 121-135https://doi.org/10.1016/S0167-8760(97)00760-5
        • Klimesch W.
        Memory processes, brain oscillations and EEG synchronization.
        Int J Psychophysiol. 1996; 24: 61-100https://doi.org/10.1016/S0167-8760(96)00057-8
        • Hanslmayr S.
        • Spitzer B.
        • Bäuml K.-H.
        Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories.
        Cereb Cortex. 2009; 19: 1631-1640https://doi.org/10.1093/cercor/bhn197
        • Meeuwissen E.B.
        • Takashima A.
        • Fernández G.
        • Jensen O.
        Evidence for human fronto-central gamma activity during long-term memory encoding of word sequences.
        PLoS One. 2011; 6: e21356https://doi.org/10.1371/journal.pone.0021356
        • Hanslmayr S.
        • Volberg G.
        • Wimber M.
        • Raabe M.
        • Greenlee M.W.
        • Bäuml K.-H.T.
        The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG-fMRI study.
        J Neurosci. 2011; 31: 15674-15680https://doi.org/10.1523/JNEUROSCI.3140-11.2011
        • Schulz H.
        • Ubelacker T.
        • Keil J.
        • Müller N.
        • Weisz N.
        Now I am ready-now i am not: the influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials.
        Cereb Cortex. 2014; 24: 1708-1719https://doi.org/10.1093/cercor/bht024
        • Keil J.
        • Timm J.
        • Sanmiguel I.
        • Schulz H.
        • Obleser J.
        • Schönwiesner M.
        Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials.
        J Neurophysiol. 2014; 111: 513-519https://doi.org/10.1152/jn.00387.2013
        • Herrmann C.S.
        • Rach S.
        • Neuling T.
        • Strüber D.
        Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes.
        Front Hum Neurosci. 2013; 7: 279https://doi.org/10.3389/fnhum.2013.00279
        • Witkowski M.
        • Garcia-Cossio E.
        • Chander B.S.
        • Braun C.
        • Birbaumer N.
        • Robinson S.E.
        • et al.
        Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).
        Neuroimage. 2015; https://doi.org/10.1016/j.neuroimage.2015.10.024
        • Helfrich R.F.
        • Schneider T.R.
        • Rach S.
        • Trautmann-Lengsfeld S.A.
        • Engel A.K.
        • Herrmann C.S.
        Entrainment of brain oscillations by transcranial alternating current stimulation.
        Curr Biol. 2014; 24: 333-339https://doi.org/10.1016/j.cub.2013.12.041
        • Polanía R.
        • Nitsche M.A.
        • Korman C.
        • Batsikadze G.
        • Paulus W.
        The importance of timing in segregated theta phase-coupling for cognitive performance.
        Curr Biol. 2012; 22: 1314-1318https://doi.org/10.1016/j.cub.2012.05.021
        • Jaušovec N.
        • Jaušovec K.
        Increasing working memory capacity with theta transcranial alternating current stimulation (tACS).
        Biol Psychol. 2014; 96: 42-47https://doi.org/10.1016/j.biopsycho.2013.11.006
        • Jaušovec N.
        • Jaušovec K.
        • Pahor A.
        The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions.
        Acta Psychol (Amst). 2014; 146: 1-6https://doi.org/10.1016/j.actpsy.2013.11.011
        • van Driel J.
        • Sligte I.G.
        • Linders J.
        • Elport D.
        • Cohen M.X.
        Frequency band-specific electrical brain stimulation modulates cognitive control processes.
        PLoS One. 2015; 10: e0138984https://doi.org/10.1371/journal.pone.0138984
        • Zaehle T.
        • Rach S.
        • Herrmann C.S.
        Transcranial alternating current stimulation enhances individual alpha activity in human EEG.
        PLoS One. 2010; 5: e13766https://doi.org/10.1371/journal.pone.0013766
        • Neuling T.
        • Rach S.
        • Herrmann C.S.
        Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states.
        Front Hum Neurosci. 2013; 7: 161https://doi.org/10.3389/fnhum.2013.00161
        • Brittain J.-S.
        • Probert-Smith P.
        • Aziz T.Z.
        • Brown P.
        Tremor suppression by rhythmic transcranial current stimulation.
        Curr Biol. 2013; 23: 436-440https://doi.org/10.1016/j.cub.2013.01.068
        • Feurra M.
        • Pasqualetti P.
        • Bianco G.
        • Santarnecchi E.
        • Rossi A.
        • Rossi S.
        State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.
        J Neurosci. 2013; 33: 17483-17489https://doi.org/10.1523/JNEUROSCI.1414-13.2013
        • Schmidt S.L.
        • Iyengar A.K.
        • Foulser a A.
        • Boyle M.R.
        • Fröhlich F.
        Endogenous cortical oscillations constrain neuromodulation by weak electric fields.
        Brain Stimul. 2014; 7: 878-889https://doi.org/10.1016/j.brs.2014.07.033
        • Ali M.M.
        • Sellers K.K.
        • Fröhlich F.
        Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance.
        J Neurosci. 2013; 33: 11262-11275https://doi.org/10.1523/JNEUROSCI.5867-12.2013
        • Stonkus R.
        • Braun V.
        • Kerlin J.R.
        • Volberg G.
        • Hanslmayr S.
        Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS.
        Sci Rep. 2016; 6: 32065https://doi.org/10.1038/srep32065
        • Ruhnau P.
        • Keitel C.
        • Lithari C.
        • Weisz N.
        • Neuling T.
        Flicker-driven responses in visual cortex change during matched-frequency transcranial alternating current stimulation.
        Front Hum Neurosci. 2016; 10: 184https://doi.org/10.3389/fnhum.2016.00184
        • van Driel J.
        • Sligte I.G.
        • Linders J.
        • Elport D.
        • Cohen M.X.
        Frequency band-specific electrical brain stimulation modulates cognitive control processes.
        PLoS One. 2015; 10: e0138984https://doi.org/10.1371/journal.pone.0138984
        • Kim H.
        Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies.
        Neuroimage. 2011; 54: 2446-2461https://doi.org/10.1016/j.neuroimage.2010.09.045
        • Hanslmayr S.
        • Matuschek J.
        • Fellner M.-C.
        Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.
        Curr Biol. 2014; 24: 904-909https://doi.org/10.1016/j.cub.2014.03.007
        • Wassermann E.M.
        Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5-7, 1996.
        Electroencephalogr Clin Neurophysiol. 1998; 108: 1-16https://doi.org/10.1016/S0168-5597(97)00096-8
        • Floel A.
        Prefrontal cortex asymmetry for memory encoding of words and abstract shapes.
        Cereb Cortex. 2004; 14: 404-409https://doi.org/10.1093/cercor/bhh002
        • Kelley W.M.
        • Miezin F.M.
        • McDermott K.B.
        • Buckner R.L.
        • Raichle M.E.
        • Cohen N.J.
        • et al.
        Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding.
        Neuron. 1998; 20: 927-936https://doi.org/10.1016/S0896-6273(00)80474-2
        • Feurra M.
        • Bianco G.
        • Santarnecchi E.
        • Del Testa M.
        • Rossi A.
        • Rossi S.
        Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials.
        J Neurosci. 2011; 31: 12165-12170https://doi.org/10.1523/JNEUROSCI.0978-11.2011
        • Raco V.
        • Bauer R.
        • Tharsan S.
        • Gharabaghi A.
        Combining TMS and tACS for closed-loop phase-dependent modulation of corticospinal excitability: a feasibility study.
        Front Cell Neurosci. 2016; 10: 1-8https://doi.org/10.3389/fncel.2016.00143
        • Nakazono H.
        • Ogata K.
        • Kuroda T.
        • Tobimatsu S.
        • Buzsáki G.
        • Draguhn A.
        • et al.
        Phase and frequency-dependent effects of transcranial alternating current stimulation on motor cortical excitability.
        PLoS One. 2016; 11: e0162521https://doi.org/10.1371/journal.pone.0162521
        • Guerra A.
        • Pogosyan A.
        • Nowak M.
        • Tan H.
        • Ferreri F.
        • Di Lazzaro V.
        • et al.
        Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS.
        Cereb Cortex. 2016; 26: 3977-3990https://doi.org/10.1093/cercor/bhw245
        • Barker A.T.
        • Jalinous R.
        • Freeston I.L.
        Non-invasive magnetic stimulation of human motor cortex.
        Lancet. 1985; 325: 1106-1107https://doi.org/10.1016/S0140-6736(85)92413-4
        • Pascual-Leone A.
        • Tormos J.M.
        • Keenan J.
        • Tarazona F.
        • Cañete C.
        • Catalá M.D.
        Study and modulation of human cortical excitability with transcranial magnetic stimulation.
        J Clin Neurophysiol. 1998; 15: 333-343
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901https://doi.org/10.1212/WNL.57.10.1899
        • Nitsche M.A.
        • Cohen L.G.
        • Wassermann E.M.
        • Priori A.
        • Lang N.
        • Antal A.
        • et al.
        Transcranial direct current stimulation: state of the art 2008.
        Brain Stimul. 2008; 1: 206-223https://doi.org/10.1016/j.brs.2008.06.004
        • Poreisz C.
        • Boros K.
        • Antal A.
        • Paulus W.
        Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients.
        Brain Res Bull. 2007; 72: 208-214https://doi.org/10.1016/j.brainresbull.2007.01.004
        • Coltheart M.
        The MRC psycholinguistic database.
        Q J Exp Psychol A Hum Exp Psychol. 1981; 33A: 497-505https://doi.org/10.1080/14640748108400805
        • Brainard D.H.
        The Psychophysics toolbox.
        Spat Vis. 1997; 10: 433-436https://doi.org/10.1163/156856897X00357
        • Mehta A.R.
        • Pogosyan A.
        • Brown P.
        • Brittain J.-S.
        Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor.
        Brain Stimul. 2015; 8: 260-268https://doi.org/10.1016/j.brs.2014.11.003
        • Brittain J.-S.
        • Probert-Smith P.
        • Aziz T.Z.
        • Brown P.
        Tremor suppression by rhythmic transcranial current stimulation.
        Curr Biol. 2013; 23: 436-440https://doi.org/10.1016/j.cub.2013.01.068
        • Rouder J.N.
        • Speckman P.L.
        • Sun D.
        • Morey R.D.
        • Iverson G.
        Bayesian t tests for accepting and rejecting the null hypothesis.
        Psychon Bull Rev. 2009; 16: 225-237https://doi.org/10.3758/PBR.16.2.225
        • Verhagen J.
        • Wagenmakers E.-J.
        Bayesian tests to quantify the result of a replication attempt.
        J Exp Psychol Gen. 2014; 143: 1457-1475https://doi.org/10.1037/a0036731
        • Tyrrell R.A.
        • Owens D.A.
        A rapid technique to assess the resting states of the eyes and other threshold phenomena: the Modified Binary Search (MOBS).
        Behav Res Methods, Instrum Comput. 1988; 20: 137-141https://doi.org/10.3758/BF03203817
        • Oostenveld R.
        • Fries P.
        • Maris E.
        • Schoffelen J.M.
        FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
        Comput Intell Neurosci. 2011; : 2011https://doi.org/10.1155/2011/156869
        • Berens P.
        CircStat: a MATLAB toolbox for circular statistics.
        J Stat Softw. 2009; 31: 1-21https://doi.org/10.18637/jss.v031.i10
        • Rouder J.N.
        • Morey R.D.
        • Speckman P.L.
        • Province J.M.
        Default Bayes factors for ANOVA designs.
        J Math Psychol. 2012; 56: 356-374https://doi.org/10.1016/j.jmp.2012.08.001
        • Strüber D.
        • Rach S.
        • Neuling T.
        • Herrmann C.S.
        On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation.
        Front Cell Neurosci. 2015; 9: 311https://doi.org/10.3389/fncel.2015.00311
        • Bergmann T.O.
        • Groppa S.
        • Seeger M.
        • Mölle M.
        • Marshall L.
        • Siebner H.R.
        Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation.
        J Neurophysiol. 2009; 102: 2303-2311https://doi.org/10.1152/jn.00437.2009
        • Jeffery D.T.
        • Norton J.A.
        • Roy F.D.
        • Gorassini M.A.
        Effects of transcranial direct current stimulation on the excitability of the leg motor cortex.
        Exp Brain Res. 2007; 182: 281-287https://doi.org/10.1007/s00221-007-1093-y
        • Furubayashi T.
        • Terao Y.
        • Arai N.
        • Okabe S.
        • Mochizuki H.
        • Hanajima R.
        • et al.
        Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area.
        Exp Brain Res. 2008; 185: 279-286https://doi.org/10.1007/s00221-007-1149-z
        • Vossen A.
        • Gross J.
        • Thut G.
        Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment.
        Brain Stimul. 2015; 8: 499-508https://doi.org/10.1016/j.brs.2014.12.004
        • Dmochowski J.P.
        • Datta A.
        • Bikson M.
        • Su Y.
        • Parra L.C.
        Optimized multi-electrode stimulation increases focality and intensity at target.
        J Neural Eng. 2011; 8: 46011https://doi.org/10.1088/1741-2560/8/4/046011
        • Miranda P.C.
        • Lomarev M.
        • Hallett M.
        Modeling the current distribution during transcranial direct current stimulation.
        Clin Neurophysiol. 2006; 117: 1623-1629https://doi.org/10.1016/j.clinph.2006.04.009
        • Saturnino G.B.
        • Antunes A.
        • Thielscher A.
        On the importance of electrode parameters for shaping electric field patterns generated by tDCS.
        Neuroimage. 2015; 120: 25-35https://doi.org/10.1016/j.neuroimage.2015.06.067
        • Opitz A.
        • Paulus W.
        • Will S.
        • Antunes A.
        • Thielscher A.
        Determinants of the electric field during transcranial direct current stimulation.
        Neuroimage. 2015; 109: 140-150https://doi.org/10.1016/j.neuroimage.2015.01.033
        • Datta A.
        • Truong D.
        • Minhas P.
        • Parra L.C.
        • Bikson M.
        Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models.
        Front Psychiatry. 2012; 3: 91https://doi.org/10.3389/fpsyt.2012.00091