Advertisement

Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: A double blinded, randomized clinical trial

      Highlights

      • Ten sessions of real tDCS over M1 can induce pain relief and mood improvement in patients with fibromyalgia.
      • Changes in serum beta-endorphin level correlated will with the changes in different rating scales of pain and Mood.
      • Pain relief after tDCS could be related to endorphin release.

      Abstract

      Background

      Recent studies have shown that novel neuro-modulating techniques can have pain-relieving effects in the treatment of chronic pain. The aim of this work is to evaluate the effects of transcranial direct current stimulation (tDCS) in relieving fibromyalgia pain and its relation with beta-endorphin changes.

      Material and methods

      Forty eligible patients with primary fibromyalgia were randomized to receive real anodal tDCS or sham tDCS of the left motor cortex (M1) daily for 10 days. Each patient was evaluated using widespread pain index (WPI), symptom severity of fibromyalgia (SS), visual analogue scale (VAS), and determination of pain threshold as a primary outcome. Hamilton depression and anxiety scales (HAM-D and HAM-A) and estimation of serum beta-endorphin level pre and post-sessions were used as secondary outcome. All rating scales were conducted at the baseline, after the 5th, 10th session, 15 days and 1 month after the end of the sessions.

      Results

      Eighteen patients from each group completed the follow-up schedule with no significant difference between them regarding the duration of illness or the baseline scales. A significant TIME × GROUP interaction for each rating scale (WPI, SS, VAS, pain threshold, HAM-A, HAM-D) indicated that the effect of treatment differed in the two groups with higher improvement in the experimental scores of the patients in the real tDCS group (P = 0.001 for WPI, SS, VAS, pain threshold, and 0.002, 0.03 for HAM-A, HAM-D respectively). Negative correlations between changes in serum beta-endorphin level and the changes in different rating scales were found (P = 0.003, 0.003, 0.05, 0.002, 0002 for WPI, SS, VAS, HAM-A, and HAM-D respectively).

      Conclusion

      Ten sessions of real tDCS over M1 can induce pain relief and mood improvement in patients with fibromyalgia, which were found to be related to changes in serum endorphin levels.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Wolfe F.
        • Clauw D.J.
        • Fitzcharles M.A.
        • Goldenberg D.L.
        • Katz R.S.
        • Mease P.
        • et al.
        The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity.
        Arthritis Care Res Hob. 2010; 62: 600-610
        • de Girolamo G.
        Epidemiology and social costs of low back pain and fibromyalgia.
        Clin J Pain. 1991; 7: S1-S7
        • Petzke F.
        • Clauw D.J.
        Sympathetic nervous system function in fibromyalgia.
        Curr Rheumatol Rep. 2000; 2: 116-123
        • Panerai A.E.
        • Vecchiet J.
        • Panzeri P.
        • Meroni P.
        • Scarone S.
        • Pizzigallo E.
        • et al.
        Peripheral blood mononuclear cell beta-endorphin concentration is decreased in chronic fatigue syndrome and fibromyalgia but not in depression: preliminary report.
        Clin J Pain. 2002; 18: 270-273
        • Harris R.E.
        • Clauw D.J.
        • Scott D.J.
        • McLean S.A.
        • Gracely R.H.
        • Zubieta J.K.
        Decreased central mu-opioid receptor availability in fibromyalgia.
        J Neurosci. 2007; 27: 10000-10006
        • Yunus M.B.
        • Denko C.W.
        • Masi A.T.
        Serum beta-endorphin in primary fibromyalgia syndrome: a controlled study.
        J Rheumatol. 1986; 13: 183-186
        • Hamaty D.
        • Valentine J.L.
        • Howard R.
        • Howard C.W.
        • Wakefield V.
        • Patten M.S.
        The plasma endorphin, prostaglandin and catecholamine profile of patients with fibrositis treated with cyclobenzaprine and placebo: a 5-month study.
        J Rheumatol Suppl. 1989; 19: 164-168
        • Younger J.W.
        • Zautra A.J.
        • Cummins E.T.
        Effects of naltrexone on pain sensitivity and mood in fibromyalgia: no evidence for endogenous opioid pathophysiology.
        PLoS One. 2009; 4: e5180
        • Ceko M.
        • Bushnell M.C.
        • Fitzcharles M.A.
        • Schweinhardt P.
        Fibromyalgia interacts with age to change the brain.
        Neuroimage Clin. 2013; 3: 249-260
        • Harris R.E.
        • Sundgren P.C.
        • Craig A.D.
        • Kirshenbaum E.
        • Sen A.
        • Napadow V.
        • et al.
        Elevated insular glutamate in fibromyalgia is associated with experimental pain.
        Arthritis Rheum. 2009; 60: 3146-3152
        • Valdes M.
        • Collado A.
        • Bargallo N.
        • Vazquez M.
        • Rami L.
        • Gomez E.
        • et al.
        Increased glutamate/glutamine compounds in the brains of patients with fibromyalgia: a magnetic resonance spectroscopy study.
        Arthritis Rheum. 2010; 62: 1829-1836
        • Fayed N.
        • Garcia-Campayo J.
        • Magallon R.
        • Andres-Bergareche H.
        • Luciano J.V.
        • Andres E.
        • et al.
        Localized 1H-NMR spectroscopy in patients with fibromyalgia: a controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate.
        Arthritis Res Ther. 2010; 12: R134
        • Ferrucci R.
        • Mameli F.
        • Guidi I.
        • Mrakic-Sposta S.
        • Vergari M.
        • Marceglia S.
        • et al.
        Transcranial direct current stimulation improves recognition memory in Alzheimer disease.
        Neurology. 2008; 71: 493-498
        • Kwiatek R.
        • Barnden L.
        • Tedman R.
        • Jarrett R.
        • Chew J.
        • Rowe C.
        • et al.
        Regional cerebral blood flow in fibromyalgia: single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami.
        Arthritis Rheum. 2000; 43: 2823-2833
        • Castilla-Cortazar I.
        • Castilla A.
        • Gurpegui M.
        Opioid peptides and immunodysfunction in patients with major depression and anxiety disorders.
        J Physiol Biochem. 1998; 54: 203-215
        • Lefaucheur J.P.
        • Antal A.
        • Ayache S.S.
        • Benninger D.H.
        • Brunelin J.
        • Cogiamanian F.
        • et al.
        Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).
        Clin Neurophysiol. 2017; 128: 56-92
        • Fregni F.
        • Gimenes R.
        • Valle A.C.
        • Ferreira M.J.
        • Rocha R.R.
        • Natalle L.
        • et al.
        A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia.
        Arthritis Rheum. 2006; 54: 3988-3998
        • Lefaucheur J.P.
        • Hatem S.
        • Nineb A.
        • Menard-Lefaucheur I.
        • Wendling S.
        • Keravel Y.
        • et al.
        Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain.
        Neurology. 2006; 67: 1998-2004
        • Brown J.A.
        • Barbaro N.M.
        Motor cortex stimulation for central and neuropathic pain: current status.
        Pain. 2003; 104: 431-435
        • Nuti C.
        • Peyron R.
        • Garcia-Larrea L.
        • Brunon J.
        • Laurent B.
        • Sindou M.
        • et al.
        Motor cortex stimulation for refractory neuropathic pain: four year outcome and predictors of efficacy.
        Pain. 2005; 118: 43-52
        • Khedr E.M.
        • Kotb H.
        • Kamel N.F.
        • Ahmed M.A.
        • Sadek R.
        • Rothwell J.C.
        Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain.
        J Neurol Neurosurg Psychiatry. 2005; 76: 833-838
        • Valle A.
        • Roizenblatt S.
        • Botte S.
        • Zaghi S.
        • Riberto M.
        • Tufik S.
        • et al.
        Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial.
        J Pain Manag. 2009; 2: 353-361
        • Fagerlund A.J.
        • Hansen O.A.
        • Aslaksen P.M.
        Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial.
        Pain. 2015; 156: 62-71
        • O'Connell N.E.
        • Wand B.M.
        • Marston L.
        • Spencer S.
        • Desouza L.H.
        Non-invasive brain stimulation techniques for chronic pain.
        Cochrane Database Syst Rev. 2014; 4 (CD008208)
        • Yunus M.B.
        Towards a model of pathophysiology of fibromyalgia: aberrant central pain mechanisms with peripheral modulation.
        J Rheumatol. 1992; 19: 846-850
        • Hamilton M.
        The assessment of anxiety states by rating.
        Br J Med Psychol. 1959; 32: 50-55
        • Hamilton M.
        A rating scale for depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • KuKanich B.
        • Lascelles B.D.
        • Papich M.G.
        Assessment of a von Frey device for evaluation of the antinociceptive effects of morphine and its application in pharmacodynamic modeling of morphine in dogs.
        Am J Vet Res. 2005; 66: 1616-1622
        • Homan R.W.
        • Herman J.
        • Purdy P.
        Cerebral location of international 10-20 system electrode placement.
        Electroencephalogr Clin Neurophysiol. 1987; 66: 376-382
        • Accornero N.
        • Li Voti P.
        • La Riccia M.
        • Gregori B.
        Visual evoked potentials modulation during direct current cortical polarization.
        Exp Brain Res. 2007; 178: 261-266
        • Khedr E.M.
        • Sharkawy E.S.A.
        • Attia A.M.A.
        • Ibrahim Osman N.M.
        • Sayed Z.M.
        Role of transcranial direct current stimulation on reduction of postsurgical opioid consumption and pain in total knee arthroplasty: double randomized clinical trial.
        Eur J Pain. 2017 Apr 25; (http://dx.doi.org/10.1002/ejp.1034, [Epub ahead of print])
        • Passard A.
        • Attal N.
        • Benadhira R.
        • Brasseur L.
        • Saba G.
        • Sichere P.
        • et al.
        Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic widespread pain in fibromyalgia.
        Brain. 2007; 130: 2661-2670
        • Mhalla A.
        • Baudic S.
        • Ciampi de Andrade D.
        • Gautron M.
        • Perrot S.
        • Teixeira M.J.
        • et al.
        Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia.
        Pain. 2011; 152: 1478-1485
        • Polania R.
        • Nitsche M.A.
        • Paulus W.
        Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation.
        Hum Brain Mapp. 2011; 32: 1236-1249
        • Polania R.
        • Paulus W.
        • Antal A.
        • Nitsche M.A.
        Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.
        Neuroimage. 2011; 54: 2287-2296
        • Polania R.
        • Paulus W.
        • Nitsche M.A.
        Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation.
        Hum Brain Mapp. 2012; b33: 2499-2508
        • Bair M.J.
        • Robinson R.L.
        • Katon W.
        • Kroenke K.
        Depression and pain comorbidity: a literature review.
        Arch Intern Med. 2003; 163: 2433-2445
        • Rayner L.
        • Hotopf M.
        • Petkova H.
        • Matcham F.
        • Simpson A.
        • McCracken L.M.
        Depression in patients with chronic pain attending a specialised pain treatment centre: prevalence and impact on health care costs.
        Pain. 2016; 157: 1472-1479
        • Vaseghi B.
        • Zoghi M.
        • Jaberzadeh S.
        Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study.
        Clin Neurophysiol. 2014; 125: 1847-1858
        • Tracey I.
        Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans.
        Nat Med. 2010; 16: 1277-1283
        • Lindenberg R.
        • Nachtigall L.
        • Meinzer M.
        • Sieg M.M.
        • Floel A.
        Differential effects of dual and unihemispheric motor cortex stimulation in older adults.
        J Neurosci. 2013; 33: 9176-9183
        • Sehm B.
        • Schafer A.
        • Kipping J.
        • Margulies D.
        • Conde V.
        • Taubert M.
        • et al.
        Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation.
        J Neurophysiol. 2012; 108: 3253-3263
        • Lucas J.M.
        • Ji Y.
        • Masri R.
        Motor cortex stimulation reduces hyperalgesia in an animal model of central pain.
        Pain. 2011; 152: 1398-1407
        • Brunoni A.R.
        • Fregni F.
        Clinical trial design in non-invasive brain stimulation psychiatric research.
        Int J Methods Psychiatr Res. 2011; 20: e19-30
        • de Andrade D.C.
        • Mhalla A.
        • Adam F.
        • Texeira M.J.
        • Bouhassira D.
        Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids.
        Pain. 2011; 152: 320-326
        • DosSantos M.F.
        • Martikainen I.K.
        • Nascimento T.D.
        • Love T.M.
        • DeBoer M.D.
        • Schambra H.M.
        • et al.
        Building up analgesia in humans via the endogenous mu-opioid system by combining placebo and active tDCS: a preliminary report.
        PLoS One. 2014; 9: e102350
        • Stein D.J.
        • van Honk J.
        • Ipser J.
        • Solms M.
        • Panksepp J.
        Opioids: from physical pain to the pain of social isolation.
        CNS Spectr. 2007; 12 (672-4): 669-670
        • Navines R.
        • Martin-Santos R.
        • Gomez-Gil E.
        • Martinez de Osaba M.J.
        • Gasto C.
        Interaction between serotonin 5-HT1A receptors and beta-endorphins modulates antidepressant response.
        Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32: 1804-1809
        • Djurovic D.
        • Milic-Askrabic J.
        • Majkic-Singh N.
        Effect of fluvoxamine on the level of beta-endorphin in the sera and nervous tissue of rats.
        Pharmazie. 1998; 53: 143-144
        • Petrovic P.
        • Kalso E.
        • Petersson K.M.
        • Ingvar M.
        Placebo and opioid analgesia– imaging a shared neuronal network.
        Science. 2002; 295: 1737-1740
        • Wager T.D.
        • Scott D.J.
        • Zubieta J.K.
        Placebo effects on human mu-opioid activity during pain.
        Proc Natl Acad Sci U. S. A. 2007; 104: 11056-11061
        • Shin Y.I.
        • Foerster A.
        • Nitsche M.A.
        Transcranial direct current stimulation (tDCS) - application in neuropsychology.
        Neuropsychologia. 2015; 69: 154-175
        • Khedr E.M.
        • Gamal N.F.
        • El-Fetoh N.A.
        • Khalifa H.
        • Ahmed E.M.
        • Ali A.M.
        • et al.
        A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer's disease.
        Front Aging Neurosci. 2014; 6: 275