Advertisement

Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk

Published:October 17, 2017DOI:https://doi.org/10.1016/j.brs.2017.10.012

      Highlights

      • Illustrated that limited output tES devices have specifications that are below most FDA cleared devices.
      • Argued that limited output tES devices would not introduce risk if they are responsibly manufactured and legally marketed.
      • Detailed voluntary manufacturer guidance for limited output tES to minimize risks, while supporting access and innovation.
      • Outlined industry guidance that are consistent with and expand on the current regulatory standards.
      • Classified FDA product codes for more than 1200 electrical stimulators that have been FDA cleared for marketing since 1977.

      Abstract

      We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Guleyupoglu B.
        • Schestatsky P.
        • Edwards D.
        • Fregni F.
        • Bikson M.
        Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.
        J Neurosci Methods. 2013; 219: 297-311https://doi.org/10.1016/j.jneumeth.2013.07.016
        • Peterchev A.V.
        • Wagner T.A.
        • Miranda P.C.
        • Nitsche M.A.
        • Paulus W.
        • Lisanby S.H.
        • et al.
        Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.
        Brain Stimul. 2012; 5: 435-453https://doi.org/10.1016/j.brs.2011.10.001
        • Hamilton R.
        • Messing S.
        • Chatterjee A.
        Rethinking the thinking cap: ethics of neural enhancement using noninvasive brain stimulation.
        Neurology. 2011; 76 (Epub 2011/01/12): 187-193https://doi.org/10.1212/WNL.0b013e318205d50d
        • Cohen Kadosh R.
        • Levy N.
        • O'Shea J.
        • Shea N.
        • Savulescu J.
        The neuroethics of non-invasive brain stimulation.
        Curr Biol. 2012; 22 (Epub 2012/03/01): R108-R111https://doi.org/10.1016/j.cub.2012.01.013
        • Dubljevic V.
        • Saigle V.
        • Racine E.
        The rising tide of tDCS in the media and academic literature.
        Neuron. 2014; 82 (Epub 2014/05/24): 731-736https://doi.org/10.1016/j.neuron.2014.05.003
        • Fitz N.S.
        • Reiner P.B.
        The challenge of crafting policy for do-it-yourself brain stimulation.
        J Med Ethics. 2013; 41 (Epub 2013/06/05): 410-412https://doi.org/10.1136/medethics-2013-101458
        • Maslen H.
        • Savulescu J.
        • Douglas T.
        • Levy N.
        • Cohen Kadosh R.
        Regulation of devices for cognitive enhancement.
        Lancet. 2013; 382 (Epub 2013/09/17): 938-939https://doi.org/10.1016/s0140-6736(13)61931-5
        • Fregni F.
        • Nitsche M.A.
        • Loo C.K.
        • Brunoni A.R.
        • Marangolo P.
        • Leite J.
        • et al.
        Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel.
        Clin Res Regul Aff. 2015; 32: 22-35https://doi.org/10.3109/10601333.2015.980944
        • Wittich C.M.
        • Burkle C.M.
        • Lanier W.L.
        Ten common questions (and their answers) about off-label drug use.
        Mayo Clin Proc. 2012; 87 (Epub 2012/08/11): 982-990https://doi.org/10.1016/j.mayocp.2012.04.017
        • Riley Jr., J.B.
        • Basilius P.A.
        Physicians' liability for off-label prescriptions.
        Hematol Oncol News Issues. 2007; 6: 24-37
      1. Bax Global Inc v Brenneman, (Ohio Ct App 2007).

      2. Wilkes M, Johns M. Informed Consent and Shared Decision-Making: A requirement to disclose to patients off-label prescriptions. PLoS medicine 2008;5(11):1553–1556. Epub November 11, 2008. doi: 10.1371/journal.pmed.0050223.

        • Kanai R.
        • Chaieb L.
        • Antal A.
        • Walsh V.
        • Paulus W.
        Frequency-dependent electrical stimulation of the visual cortex.
        Curr Biol. 2008; 18 (Epub 2008/11/26): 1839-1843https://doi.org/10.1016/j.cub.2008.10.027
        • Boggio P.S.
        • Ferrucci R.
        • Rigonatti S.P.
        • Covre P.
        • Nitsche M.
        • Pascual-Leone A.
        • et al.
        Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease.
        J Neurol Sci. 2006; 249 (Epub 2006/07/18): 31-38https://doi.org/10.1016/j.jns.2006.05.062
        • Weber M.J.
        • Messing S.B.
        • Rao H.
        • Detre J.A.
        • Thompson-Schill S.L.
        Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.
        Hum Brain Mapp. 2014; 35 (Epub 2014/01/24): 3673-3686https://doi.org/10.1002/hbm.22429
        • Rush S.
        • Driscoll D.A.
        Current distribution in the brain from surface electrodes.
        Anesth Analg. 1968; 47 (Epub 1968/11/01): 717-723
        • Datta A.
        • Bansal V.
        • Diaz J.
        • Patel J.
        • Reato D.
        • Bikson M.
        Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
        Brain Stimul. 2009; 2 (7.e1. Epub 2010/07/23): 201-207https://doi.org/10.1016/j.brs.2009.03.005
        • Brunoni A.R.
        • Nitsche M.A.
        • Bolognini N.
        • Bikson M.
        • Wagner T.
        • Merabet L.
        • et al.
        Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions.
        Brain Stimul. 2012; 5 (Epub 2011/11/01): 175-195https://doi.org/10.1016/j.brs.2011.03.002
        • Seibt O.
        • Brunoni A.R.
        • Huang Y.
        • Bikson M.
        The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS).
        Brain Stimul. 2015; 8: 590-602https://doi.org/10.1016/j.brs.2015.01.401
        • Kincses T.Z.
        • Antal A.
        • Nitsche M.A.
        • Bartfai O.
        • Paulus W.
        Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human.
        Neuropsychologia. 2004; 42 (Epub 2003/11/15): 113-117
        • Iyer M.B.
        • Mattu U.
        • Grafman J.
        • Lomarev M.
        • Sato S.
        • Wassermann E.M.
        Safety and cognitive effect of frontal DC brain polarization in healthy individuals.
        Neurology. 2005; 64 (Epub 2005/03/09): 872-875https://doi.org/10.1212/01.wnl.0000152986.07469.e9
        • Antal A.
        • Kincses T.Z.
        • Nitsche M.A.
        • Paulus W.
        Manipulation of phosphene thresholds by transcranial direct current stimulation in man.
        Exp Brain Res. 2003; 150 (Epub 2003/04/17): 375-378https://doi.org/10.1007/s00221-003-1459-8
        • Schwiedrzik C.M.
        Retina or visual Cortex? The site of phosphene induction by transcranial alternating current stimulation.
        Front Integr Neurosci. 2009; 3: 6https://doi.org/10.3389/neuro.07.006.2009
        • Rohracher H.
        Uber subjektive Lichterscheinungen bei Reizung mit Wechselstromen.
        Z für Sinnesphysiol. 1935; 66: 164-181
        • Brindley G.S.
        The site of electrical excitation of the human eye.
        J Physiol. 1955; 127: 189-200
        • Schutter D.J.
        • Hortensius R.
        Retinal origin of phosphenes to transcranial alternating current stimulation.
        Clin Neurophysiol. 2010; 121 (Epub 2010/03/02): 1080-1084https://doi.org/10.1016/j.clinph.2009.10.038
      3. Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 1082012. p. 2173–2178.

        • Sparing R.
        • Thimm M.
        • Hesse M.D.
        • Kust J.
        • Karbe H.
        • Fink G.R.
        Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation.
        Brain. 2009; 132 (Epub 2009/06/17): 3011-3020https://doi.org/10.1093/brain/awp154
        • Rorsman I.
        • Magnusson M.
        • Johansson B.B.
        Reduction of visuo-spatial neglect with vestibular galvanic stimulation.
        Scand J Rehabil Med. 1999; 31 (Epub 1999/06/25): 117-124
        • Wexler A.
        A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States.
        J Law Biosci. 2015; 2 (Epub 2016/10/25): 669-696https://doi.org/10.1093/jlb/lsv039
      4. List of IEC 60601 Standards 2017 [August 28, 2017]. Available from: http://www.601help.com/Other_601_Standards/other_601_standards.html.

      5. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on medical devices, and amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 EUR-Lex Access to European Union law: EUROPA; 2012 [cited 2017 02/09/17]. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52012PC0542.

        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin Neurophysiol. 2009; 120 (Epub 2009/10/17): 2008-2039https://doi.org/10.1016/j.clinph.2009.08.016
        • Donnell A.
        • DN T.
        • Lawrence M.
        • Gupta V.
        • Zieba T.
        • Truong D.Q.
        • et al.
        High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD.
        Brain Stimul. 2015; 8: 1085-1092https://doi.org/10.1016/j.brs.2015.06.008
        • Kirsch D.L.
        • Nichols F.
        Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia.
        Psychiatr Clin North Am. 2013; 36: 169-176https://doi.org/10.1016/j.psc.2013.01.006
        • Taylor A.G.
        • Anderson J.G.
        • Riedel S.L.
        • Lewis J.E.
        • Kinser P.A.
        • Bourguignon C.
        Cranial electrical stimulation improves symptoms and functional status in individuals with fibromyalgia.
        Pain Manag Nurs. 2013; 14 (Epub 2013/12/10): 327-335https://doi.org/10.1016/j.pmn.2011.07.002
        • Lee S.H.
        • Kim W.Y.
        • Lee C.H.
        • Min T.J.
        • Lee Y.S.
        • Kim J.H.
        • et al.
        Effects of cranial electrotherapy stimulation on preoperative anxiety, pain and endocrine response.
        J Int Med Res. 2013; 41 (Epub 2013/11/23): 1788-1795https://doi.org/10.1177/0300060513500749
        • U.S. Food and Drug Administration Center for Devices and Radiological Health
        Draft guidance for industry and FDA staff: class II special controls guidance document: transcutaneous electrical nerve stimulator with limited output for pain relief.
        U.S. Department of Health and Human Services Food and Drug Administration, Center for Devices and Radiological Health, 2010
        • U.S. Food and Drug Administration Center for Devices and Radiological Health
        Draft guidance for industry and FDA staff: class II special controls guidance document: transcutaneous electrical stimulator with limited output for aesthetic purposes.
        U.S. Department of Health and Human Services Food and Drug Administration, Center for Devices and Radiological Health, 2010
        • Bikson M.
        • Grossman P.
        • Thomas C.
        • Zannou A.L.
        • Jiang J.
        • Adnan T.
        • et al.
        Safety of transcranial direct current stimulation: evidence based update 2016.
        Brain Stimul. 2016; 9: 641-661https://doi.org/10.1016/j.brs.2016.06.004
        • Giordano J.
        Toward an operational neuroethical risk analysis and mitigation paradigm for emerging neuroscience and technology (neuroS/T).
        Exp Neurol. 2016; 287 (Epub 2016/10/25): 492-495https://doi.org/10.1016/j.expneurol.2016.07.016
        • Charvet L.E.
        • Kasschau M.
        • Datta A.
        • Knotkova H.
        • Stevens M.C.
        • Alonzo A.
        • et al.
        Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols.
        Front Syst Neurosci. 2015; 9: 26https://doi.org/10.3389/fnsys.2015.00026
        • Kasschau M.
        • Sherman K.
        • Haider L.
        • Frontario A.
        • Shaw M.
        • Datta A.
        • et al.
        A protocol for the use of remotely-supervised transcranial direct current stimulation (tDCS) in multiple sclerosis (MS).
        J Vis Exp. 2015; 106: e53542https://doi.org/10.3791/53542
      6. Food and Drug Administration H. Class II Special Controls Guidance Document: Transcutaneous Electrical Nerve Stimulator with Limited Output for Pain Relief - Draft Guidance for Industry and FDA Staff. In: Services USDoHaH, editor. Food and Drug Administration.

        • Bikson M.
        • Datta A.
        • Elwassif M.
        Establishing safety limits for transcranial direct current stimulation.
        Clin Neurophysiol. 2009; 120: 1033-1034https://doi.org/10.1016/j.clinph.2009.03.018
        • Magis D.
        • Sava S.
        • d'Elia T.S.
        • Baschi R.
        • Schoenen J.
        Safety and patients' satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly(R) device in headache treatment: a survey of 2,313 headache sufferers in the general population.
        J Headache Pain. 2013; 14: 95https://doi.org/10.1186/1129-2377-14-95
        • Kavanagh S.
        • Newell J.
        • Hennessy M.
        • Sadick N.
        Use of a neuromuscular electrical stimulation device for facial muscle toning: a randomized, controlled trial.
        J Cosmet Dermatol. 2012; 11: 261-266
        • DeGiorgio C.M.
        • Murray D.
        • Markovic D.
        • Whitehurst T.
        Trigeminal nerve stimulation for epilepsy: long-term feasibility and efficacy.
        Neurology. 2009; 72: 936-938https://doi.org/10.1212/01.wnl.0000344181.97126.b4
        • DeGiorgio C.M.
        • Fanselow E.E.
        • Schrader L.M.
        • Cook I.A.
        Trigeminal nerve stimulation: seminal animal and human studies for epilepsy and depression.
        Neurosurg Clin N Am. 2011; 22: 449-456https://doi.org/10.1016/j.nec.2011.07.001
        • Schrader L.M.
        • Cook I.A.
        • Miller P.R.
        • Maremont E.R.
        • DeGiorgio C.M.
        Trigeminal nerve stimulation in major depressive disorder: first proof of concept in an open pilot trial.
        Epilepsy Behav. 2011; 22: 475-478https://doi.org/10.1016/j.yebeh.2011.06.026
        • DeGiorgio C.M.
        • Soss J.
        • Cook I.A.
        • Markovic D.
        • Gornbein J.
        • Murray D.
        • et al.
        Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy.
        Neurology. 2013; 80: 786-791https://doi.org/10.1212/WNL.0b013e318285c11a
        • Adeyemo B.O.
        • Simis M.
        • Macea D.D.
        • Fregni F.
        Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke.
        Front Psychiatry. 2012; 3 (Epub 2012/11/20): 88https://doi.org/10.3389/fpsyt.2012.00088
        • Dmochowski J.P.
        • Datta A.
        • Huang Y.
        • Richardson J.D.
        • Bikson M.
        • Fridriksson J.
        • et al.
        Targeted transcranial direct current stimulation for rehabilitation after stroke.
        Neuroimage. 2013; 75: 12-19https://doi.org/10.1016/j.neuroimage.2013.02.049
        • Hummel F.
        • Celnik P.
        • Giraux P.
        • Floel A.
        • Wu W.H.
        • Gerloff C.
        • et al.
        Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
        Brain. 2005; 128 (Epub 2005/01/07): 490-499https://doi.org/10.1093/brain/awh369
        • Hummel F.C.
        • Voller B.
        • Celnik P.
        • Floel A.
        • Giraux P.
        • Gerloff C.
        • et al.
        Effects of brain polarization on reaction times and pinch force in chronic stroke.
        BMC Neurosci. 2006; 7 (Epub 2006/11/07): 73https://doi.org/10.1186/1471-2202-7-73
        • Shah P.P.
        • Szaflarski J.P.
        • Allendorfer J.
        • Hamilton R.H.
        Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation.
        Front Hum Neurosci. 2013; 7 (Epub 2014/01/09): 888https://doi.org/10.3389/fnhum.2013.00888
        • Loo C.K.
        • Alonzo A.
        • Martin D.
        • Mitchell P.B.
        • Galvez V.
        • Sachdev P.
        Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial.
        Br J Psychiatry. 2012; 200 (Epub 2012/01/05): 52-59https://doi.org/10.1192/bjp.bp.111.097634
        • Brunoni A.R.
        • Valiengo L.
        • Baccaro A.
        • Zanao T.A.
        • de Oliveira J.F.
        • Goulart A.
        • et al.
        The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial.
        JAMA Psychiatry. 2013; 70 (Epub 2013/02/08): 383-391https://doi.org/10.1001/2013.jamapsychiatry.32
        • Kuo M.F.
        • Paulus W.
        • Nitsche M.A.
        Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases.
        Neuroimage. 2014; 85 (Epub 2013/06/12): 948-960https://doi.org/10.1016/j.neuroimage.2013.05.117
        • Volpato C.
        • Piccione F.
        • Cavinato M.
        • Duzzi D.
        • Schiff S.
        • Foscolo L.
        • et al.
        Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive-compulsive disorder.
        Neurocase. 2013; 19 (Epub 2012/05/05): 360-370https://doi.org/10.1080/13554794.2012.667131
        • Fregni F.
        • Boggio P.S.
        • Lima M.C.
        • Ferreira M.J.
        • Wagner T.
        • Rigonatti S.P.
        • et al.
        A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury.
        Pain. 2006; 122 (Epub 2006/03/28): 197-209https://doi.org/10.1016/j.pain.2006.02.023
        • Ngernyam N.
        • Jensen M.P.
        • Arayawichanon P.
        • Auvichayapat N.
        • Tiamkao S.
        • Janjarasjitt S.
        • et al.
        The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury.
        Clin Neurophysiol. 2014; 126 (Epub 2014/07/17): 382-390https://doi.org/10.1016/j.clinph.2014.05.034
        • Wrigley P.J.
        • Gustin S.M.
        • McIndoe L.N.
        • Chakiath R.J.
        • Henderson L.A.
        • Siddall P.J.
        Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial.
        Pain. 2013; 154 (Epub 2013/07/09): 2178-2184https://doi.org/10.1016/j.pain.2013.06.045
        • Yoon E.J.
        • Kim Y.K.
        • Kim H.R.
        • Kim S.E.
        • Lee Y.
        • Shin H.I.
        Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: a mechanistic PET study.
        Neurorehabil Neural Repair. 2014; 28 (Epub 2013/11/12): 250-259https://doi.org/10.1177/1545968313507632
        • Boggio P.S.
        • Amancio E.J.
        • Correa C.F.
        • Cecilio S.
        • Valasek C.
        • Bajwa Z.
        • et al.
        Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study.
        Clin J Pain. 2009; 25 (Epub 2009/11/19): 691-695https://doi.org/10.1097/AJP.0b013e3181af1414
        • Dasilva A.F.
        • Mendonca M.E.
        • Zaghi S.
        • Lopes M.
        • Dossantos M.F.
        • Spierings E.L.
        • et al.
        tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine.
        Headache. 2012; 52: 1283-1295https://doi.org/10.1111/j.1526-4610.2012.02141.x
        • DosSantos M.F.
        • Love T.M.
        • Martikainen I.K.
        • Nascimento T.D.
        • Fregni F.
        • Cummiford C.
        • et al.
        Immediate effects of tDCS on the mu-opioid system of a chronic pain patient.
        Front Psychiatry. 2012; 3 (Epub 2012/11/07): 93https://doi.org/10.3389/fpsyt.2012.00093
        • DosSantos M.F.
        • Martikainen I.K.
        • Nascimento T.D.
        • Love T.M.
        • DeBoer M.D.
        • Schambra H.M.
        • et al.
        Building up analgesia in humans via the endogenous mu-opioid system by combining placebo and active tDCS: a preliminary report.
        PLoS One. 2014; 9: e102350https://doi.org/10.1371/journal.pone.0102350
        • Mylius V.
        • Borckardt J.J.
        • Lefaucheur J.P.
        Noninvasive cortical modulation of experimental pain.
        Pain. 2012; 153 (Epub 2012/05/29): 1350-1363https://doi.org/10.1016/j.pain.2012.04.009
        • Naylor J.C.
        • Borckardt J.J.
        • Marx C.E.
        • Hamer R.M.
        • Fredrich S.
        • Reeves S.T.
        • et al.
        Cathodal and anodal left prefrontal tDCS and the perception of control over pain.
        Clin J Pain. 2014; 30 (Epub 2013/11/28): 693-700https://doi.org/10.1097/ajp.0000000000000025
        • Saunders N.
        • Downham R.
        • Turman B.
        • Kropotov J.
        • Clark R.
        • Yumash R.
        • et al.
        Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory.
        Neurocase. 2014; (Epub 2014/03/04)https://doi.org/10.1080/13554794.2014.890727
        • Faria P.
        • Fregni F.
        • Sebastiao F.
        • Dias A.I.
        • Leal A.
        Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy.
        Epilepsy Behav. 2012; 25 (Epub 2012/11/06): 417-425https://doi.org/10.1016/j.yebeh.2012.06.027
        • Yook S.W.
        • Park S.H.
        • Seo J.H.
        • Kim S.J.
        • Ko M.H.
        Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient - a case report.
        Ann Rehabil Med. 2011; 35 (Epub 2012/04/17): 579-582https://doi.org/10.5535/arm.2011.35.4.579
        • Brunoni A.R.
        • Shiozawa P.
        • Truong D.
        • Javitt D.C.
        • Elkis H.
        • Fregni F.
        • et al.
        Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis.
        Expert Rev Med Devices. 2014; 11: 383-394https://doi.org/10.1586/17434440.2014.911082
        • Hoy K.E.
        • Arnold S.L.
        • Emonson M.R.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia.
        Schizophr Res. 2014; 155 (Epub 2014/04/08): 96-100https://doi.org/10.1016/j.schres.2014.03.006
        • Narayanaswamy J.C.
        • Shivakumar V.
        • Bose A.
        • Agarwal S.M.
        • Venkatasubramanian G.
        • Gangadhar B.N.
        Sustained improvement of negative symptoms in schizophrenia with add-on tDCS.
        Clin Schizophr Relat Psychoses. 2014; (Epub 2014/06/22): 1-7https://doi.org/10.3371/csrp.jnvs.061314
        • Shiozawa P.
        • da Silva M.E.
        • Cordeiro Q.
        • Fregni F.
        • Brunoni A.R.
        Transcranial direct current stimulation (tDCS) for the treatment of persistent visual and auditory hallucinations in schizophrenia: a case study.
        Brain Stimul. 2013; 6 (Epub 2013/04/23): 831-833https://doi.org/10.1016/j.brs.2013.03.003
        • Jacobson L.
        • Ezra A.
        • Berger U.
        • Lavidor M.
        Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation.
        Clin Neurophysiol. 2012; 123 (Epub 2011/10/15): 979-984https://doi.org/10.1016/j.clinph.2011.09.016
        • Hsu T.Y.
        • Tseng L.Y.
        • Yu J.X.
        • Kuo W.J.
        • Hung D.L.
        • Tzeng O.J.
        • et al.
        Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.
        Neuroimage. 2011; 56 (Epub 2011/04/05): 2249-2257https://doi.org/10.1016/j.neuroimage.2011.03.059
        • Kang E.K.
        • Baek M.J.
        • Kim S.
        • Paik N.J.
        Non-invasive cortical stimulation improves post-stroke attention decline.
        Restor Neurol Neurosci. 2009; 27 (Epub 2010/01/01): 645-650https://doi.org/10.3233/rnn-2009-0514
        • Angelakis E.
        • Liouta E.
        • Andreadis N.
        • Korfias S.
        • Ktonas P.
        • Stranjalis G.
        • et al.
        Transcranial direct current stimulation effects in disorders of consciousness.
        Arch Phys Med Rehabil. 2014; 95 (Epub 2013/09/17): 283-289https://doi.org/10.1016/j.apmr.2013.09.002
        • Thibaut A.
        • Bruno M.A.
        • Ledoux D.
        • Demertzi A.
        • Laureys S.
        tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study.
        Neurology. 2014; 82 (Epub 2014/02/28): 1112-1118https://doi.org/10.1212/wnl.0000000000000260
        • Benninger D.H.
        • Lomarev M.
        • Lopez G.
        • Wassermann E.M.
        • Li X.
        • Considine E.
        • et al.
        Transcranial direct current stimulation for the treatment of Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2010; 81 (Epub 2010/09/28): 1105-1111https://doi.org/10.1136/jnnp.2009.202556
        • Floel A.
        tDCS-enhanced motor and cognitive function in neurological diseases.
        Neuroimage. 2014; 85 (Epub 2013/06/04): 934-947https://doi.org/10.1016/j.neuroimage.2013.05.098
        • Fregni F.
        • Boggio P.S.
        • Santos M.C.
        • Lima M.
        • Vieira A.L.
        • Rigonatti S.P.
        • et al.
        Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease.
        Mov Disord. 2006; 21 (Epub 2006/07/04): 1693-1702https://doi.org/10.1002/mds.21012
        • Pereira J.B.
        • Junque C.
        • Bartres-Faz D.
        • Marti M.J.
        • Sala-Llonch R.
        • Compta Y.
        • et al.
        Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson's disease.
        Brain Stimul. 2013; 6 (Epub 2012/03/14): 16-24https://doi.org/10.1016/j.brs.2012.01.006
        • Shahbabaie A.
        • Golesorkhi M.
        • Zamanian B.
        • Ebrahimpoor M.
        • Keshvari F.
        • Nejati V.
        • et al.
        State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving.
        Int J Neuropsychopharmacol. 2014; (Epub 2014/05/16): 1-8https://doi.org/10.1017/s1461145714000686
        • Fecteau S.
        • Knoch D.
        • Fregni F.
        • Sultani N.
        • Boggio P.
        • Pascual-Leone A.
        Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study.
        J Neurosci. 2007; 27 (Epub 2007/11/16): 12500-12505https://doi.org/10.1523/jneurosci.3283-07.2007
        • da Silva M.C.
        • Conti C.L.
        • Klauss J.
        • Alves L.G.
        • do Nascimento Cavalcante H.M.
        • Fregni F.
        • et al.
        Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence.
        J Physiol Paris. 2013; 107 (Epub 2013/07/31): 493-502https://doi.org/10.1016/j.jphysparis.2013.07.003
        • Klauss J.
        • Penido Pinheiro L.C.
        • Silva Merlo B.L.
        • Correia Santos G.D.
        • Fregni F.
        • Nitsche M.A.
        • et al.
        A randomized controlled trial of targeted prefrontal cortex modulation with tDCS in patients with alcohol dependence.
        Int J Neuropsychopharmacol. 2014; 17 (Epub 2014/07/11): 1793-1803https://doi.org/10.1017/s1461145714000984
        • Pedron S.
        • Monnin J.
        • Haffen E.
        • Sechter D.
        • Van Waes V.
        Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption.
        Neuropsychopharmacology. 2014; 39 (Epub 2013/10/25): 981-988https://doi.org/10.1038/npp.2013.298
        • Bikson M.
        • Paneri B.
        • Giordano J.
        The off-label use, utility and potential value of tDCS in the clinical care of particular neuropsychiatric conditions.
        J Law Biosci. 2016; 3: 642-646https://doi.org/10.1093/jlb/lsw044
        • Berryhill M.E.
        • Jones K.T.
        tDCS selectively improves working memory in older adults with more education.
        Neurosci Lett. 2012; 521 (Epub 2012/06/12): 148-151https://doi.org/10.1016/j.neulet.2012.05.074
        • Hoy K.E.
        • Emonson M.R.
        • Arnold S.L.
        • Thomson R.H.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls.
        Neuropsychologia. 2013; 51 (Epub 2013/06/12): 1777-1784https://doi.org/10.1016/j.neuropsychologia.2013.05.018
        • Javadi A.H.
        • Walsh V.
        Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory.
        Brain Stimul. 2012; 5 (Epub 2011/08/16): 231-241https://doi.org/10.1016/j.brs.2011.06.007
        • Mulquiney P.G.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex.
        Clin Neurophysiol. 2011; 122 (Epub 2011/06/15): 2384-2389https://doi.org/10.1016/j.clinph.2011.05.009
        • Richmond L.
        • Wolk D.
        • Chein J.
        • Olson I.R.
        Transcranial direct current stimulation enhances verbal working memory training performance over time and near-transfer outcomes.
        J Cogn Neurosci. 2014; 26 (Epub 2014/04/20): 2443-2454https://doi.org/10.1162/jocn_a_00657
        • Tseng P.
        • Hsu T.Y.
        • Chang C.F.
        • Tzeng O.J.
        • Hung D.L.
        • Muggleton N.G.
        • et al.
        Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals.
        J Neurosci. 2012; 32 (Epub 2012/08/03): 10554-10561https://doi.org/10.1523/jneurosci.0362-12.2012
        • Zaehle T.
        • Sandmann P.
        • Thorne J.D.
        • Jancke L.
        • Herrmann C.S.
        Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence.
        BMC Neurosci. 2011; 12 (Epub 2011/01/08): 2https://doi.org/10.1186/1471-2202-12-2
        • Jausovec N.
        • Jausovec K.
        Increasing working memory capacity with theta transcranial alternating current stimulation (tACS).
        Biol Psychol. 2014; 96 (Epub 2013/12/03): 42-47https://doi.org/10.1016/j.biopsycho.2013.11.006
        • Asthana M.
        • Nueckel K.
        • Muhlberger A.
        • Neueder D.
        • Polak T.
        • Domschke K.
        • et al.
        Effects of transcranial direct current stimulation on consolidation of fear memory.
        Front Psychiatry. 2013; 4 (Epub 2013/09/27): 107https://doi.org/10.3389/fpsyt.2013.00107
        • Javadi A.H.
        • Cheng P.
        Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory.
        Brain Stimul. 2013; 6 (Epub 2012/11/10): 668-674https://doi.org/10.1016/j.brs.2012.10.007
        • Marshall L.
        • Kirov R.
        • Brade J.
        • Molle M.
        • Born J.
        Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.
        PLoS One. 2011; 6 (Epub 2011/02/23): e16905https://doi.org/10.1371/journal.pone.0016905
        • Marshall L.
        • Molle M.
        • Hallschmid M.
        • Born J.
        Transcranial direct current stimulation during sleep improves declarative memory.
        J Neurosci. 2004; 24 (Epub 2004/11/05): 9985-9992https://doi.org/10.1523/jneurosci.2725-04.2004
        • Martin D.M.
        • Liu R.
        • Alonzo A.
        • Green M.
        • Loo C.K.
        Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation.
        Exp Brain Res. 2014; 232 (Epub 2014/07/06): 3345-3351https://doi.org/10.1007/s00221-014-4022-x
        • McIntire L.K.
        • McKinley R.A.
        • Goodyear C.
        • Nelson J.
        A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness.
        Brain Stimul. 2014; 7 (Epub 2014/07/23): 499-507https://doi.org/10.1016/j.brs.2014.04.008
        • Nelson J.T.
        • McKinley R.A.
        • Golob E.J.
        • Warm J.S.
        • Parasuraman R.
        Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS).
        Neuroimage. 2014; 85 (Epub 2012/12/14): 909-917https://doi.org/10.1016/j.neuroimage.2012.11.061
        • Chi R.P.
        • Snyder A.W.
        Facilitate insight by non-invasive brain stimulation.
        PLoS One. 2011; 6 (Epub 2011/02/12): e16655https://doi.org/10.1371/journal.pone.0016655
        • Chi R.P.
        • Snyder A.W.
        Brain stimulation enables the solution of an inherently difficult problem.
        Neurosci Lett. 2012; 515 (Epub 2012/03/24): 121-124https://doi.org/10.1016/j.neulet.2012.03.012
        • Chrysikou E.G.
        • Hamilton R.H.
        • Coslett H.B.
        • Datta A.
        • Bikson M.
        • Thompson-Schill S.L.
        Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use.
        Cogn Neurosci. 2013; 4: 81-89https://doi.org/10.1080/17588928.2013.768221
        • Woods A.J.
        • Hamilton R.H.
        • Kranjec A.
        • Minhaus P.
        • Bikson M.
        • Yu J.
        • et al.
        Space, time, and causality in the human brain.
        Neuroimage. 2014; 92: 285-297https://doi.org/10.1016/j.neuroimage.2014.02.015
        • Cattaneo Z.
        • Pisoni A.
        • Papagno C.
        Transcranial direct current stimulation over Broca's region improves phonemic and semantic fluency in healthy individuals.
        Neuroscience. 2011; 183 (Epub 2011/04/12): 64-70https://doi.org/10.1016/j.neuroscience.2011.03.058
        • De Vries M.H.
        • Barth A.C.
        • Maiworm S.
        • Knecht S.
        • Zwitserlood P.
        • Floel A.
        Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar.
        J Cogn Neurosci. 2010; 22 (Epub 2009/11/21): 2427-2436https://doi.org/10.1162/jocn.2009.21385
        • Fiori V.
        • Coccia M.
        • Marinelli C.V.
        • Vecchi V.
        • Bonifazi S.
        • Ceravolo M.G.
        • et al.
        Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects.
        J Cogn Neurosci. 2011; 23 (Epub 2010/10/16): 2309-2323https://doi.org/10.1162/jocn.2010.21579
        • Javadi A.H.
        • Cheng P.
        • Walsh V.
        Short duration transcranial direct current stimulation (tDCS) modulates verbal memory.
        Brain Stimul. 2012; 5 (Epub 2011/10/04): 468-474https://doi.org/10.1016/j.brs.2011.08.003
        • Meinzer M.
        • Jahnigen S.
        • Copland D.A.
        • Darkow R.
        • Grittner U.
        • Avirame K.
        • et al.
        Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary.
        Cortex. 2014; 50 (Epub 2013/08/31.): 137-147https://doi.org/10.1016/j.cortex.2013.07.013
        • Turkeltaub P.E.
        • Benson J.
        • Hamilton R.H.
        • Datta A.
        • Bikson M.
        • Coslett H.B.
        Left lateralizing transcranial direct current stimulation improves reading efficiency.
        Brain Stimul. 2012; 5: 201-207https://doi.org/10.1016/j.brs.2011.04.002
        • Bullard L.M.
        • Browning E.S.
        • Clark V.P.
        • Coffman B.A.
        • Garcia C.M.
        • Jung R.E.
        • et al.
        Transcranial direct current stimulation's effect on novice versus experienced learning.
        Exp Brain Res. 2011; 213 (Epub 2011/06/28): 9-14https://doi.org/10.1007/s00221-011-2764-2
        • Fertonani A.
        • Pirulli C.
        • Miniussi C.
        Random noise stimulation improves neuroplasticity in perceptual learning.
        J Neurosci. 2011; 31 (Epub 2011/10/28): 15416-15423https://doi.org/10.1523/jneurosci.2002-11.2011
        • Parasuraman R.
        • McKinley R.A.
        Using noninvasive brain stimulation to accelerate learning and enhance human performance.
        Hum Factors. 2014; 56 (Epub 2014/08/22): 816-824
        • Vollmann H.
        • Conde V.
        • Sewerin S.
        • Taubert M.
        • Sehm B.
        • Witte O.W.
        • et al.
        Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning.
        Brain Stimul. 2013; 6 (Epub 2012/06/05): 101-107https://doi.org/10.1016/j.brs.2012.03.018
        • Hauser T.U.
        • Rotzer S.
        • Grabner R.H.
        • Merillat S.
        • Jancke L.
        Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS).
        Front Hum Neurosci. 2013; 7 (Epub 2013/06/14): 244https://doi.org/10.3389/fnhum.2013.00244
        • Iuculano T.
        • Cohen Kadosh R.
        Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia.
        Front Hum Neurosci. 2014; 8 (Epub 2014/02/27): 38https://doi.org/10.3389/fnhum.2014.00038
        • Voss U.
        • Holzmann R.
        • Hobson A.
        • Paulus W.
        • Koppehele-Gossel J.
        • Klimke A.
        • et al.
        Induction of self awareness in dreams through frontal low current stimulation of gamma activity.
        Nat Neurosci. 2014; 17 (Epub 2014/05/13): 810-812https://doi.org/10.1038/nn.3719
        • Cogiamanian F.
        • Marceglia S.
        • Ardolino G.
        • Barbieri S.
        • Priori A.
        Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas.
        Eur J Neurosci. 2007; 26 (Epub 2007/07/07): 242-249https://doi.org/10.1111/j.1460-9568.2007.05633.x
        • Okano A.H.
        • Fontes E.B.
        • Montenegro R.A.
        • Farinatti P.D.
        • Cyrino E.S.
        • Li L.M.
        • et al.
        Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise.
        Br J Sports Med. 2013; 49 (Epub 2013/03/01): 1213-1218https://doi.org/10.1136/bjsports-2012-091658
        • Galea J.M.
        • Celnik P.
        Brain polarization enhances the formation and retention of motor memories.
        J Neurophysiol. 2009; 102 (Epub 2009/04/24): 294-301https://doi.org/10.1152/jn.00184.2009
        • Reis J.
        • Fischer J.T.
        • Prichard G.
        • Weiller C.
        • Cohen L.G.
        • Fritsch B.
        Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills.
        Cereb Cortex. 2013; 25 (Epub 2013/08/21.): 109-117https://doi.org/10.1093/cercor/bht208
        • Reis J.
        • Schambra H.M.
        • Cohen L.G.
        • Buch E.R.
        • Fritsch B.
        • Zarahn E.
        • et al.
        Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
        Proc Natl Acad Sci U. S. A. 2009; 106 (Epub 2009/01/24): 1590-1595https://doi.org/10.1073/pnas.0805413106
        • Sriraman A.
        • Oishi T.
        • Madhavan S.
        Timing-dependent priming effects of tDCS on ankle motor skill learning.
        Brain Res. 2014; 1581 (Epub 2014/07/27): 23-29https://doi.org/10.1016/j.brainres.2014.07.021
        • Tecchio F.
        • Zappasodi F.
        • Assenza G.
        • Tombini M.
        • Vollaro S.
        • Barbati G.
        • et al.
        Anodal transcranial direct current stimulation enhances procedural consolidation.
        J Neurophysiol. 2010; 104 (Epub 2010/06/12): 1134-1140https://doi.org/10.1152/jn.00661.2009
        • Horvath J.C.
        • Forte J.D.
        • Carter O.
        Quantitative review finds No evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS).
        Brain Stimul. 2015; 8 (Epub 02/24) (Epub 2015 Jan 16): 535-550https://doi.org/10.1016/j.brs.2015.01.400
        • Tremblay S.
        • Lepage J.F.
        • Latulipe-Loiselle A.
        • Fregni F.
        • Pascual-Leone A.
        • Théoret H.
        The uncertain outcome of prefrontal tDCS.
        Brain Stimul. 2014; 7: 773-783https://doi.org/10.1016/j.brs.2014.10.003
        • Horvath J.C.
        • Forte J.D.
        • Carter O.
        Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review.
        Neuropsychologia. 2014; 66 (Epub 12/03) (Epub 2014 Nov 20): 213-236https://doi.org/10.1016/j.neuropsychologia.2014.11.021
        • Sarkar A.
        • Dowker A.
        • Cohen Kadosh R.
        Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety.
        J Neurosci. 2014; 34 (Epub 12/17): 16605-16610https://doi.org/10.1523/JNEUROSCI.3129-14.2014
        • Antal A.
        • Keeser D.
        • Priori A.
        • Padberg F.
        • Nitsche M.A.
        Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by horvath and Co-workers.
        Brain Stimul. 2015; 8 (Epub 07/06) (Epub 2015 Jun 5): 846-849https://doi.org/10.1016/j.brs.2015.05.010
        • Lefaucheur J.P.
        • Antal A.
        • Ayache S.S.
        • Benninger D.H.
        • Brunelin J.
        • Cogiamanian F.
        • et al.
        Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).
        Clin Neurophysiol. 2016; 128 (Epub 11/21) (Epub 2016 Oct 29): 56-92https://doi.org/10.1016/j.clinph.2016.10.087
        • Jamil A.
        • Batsikadze G.
        • Kuo H.I.
        • Labruna L.
        • Hasan A.
        • Paulus W.
        • et al.
        Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.
        J Physiol. 2016; 595 (Epub 10/11) (Epub 2016 Nov 8): 1273-1288https://doi.org/10.1113/JP272738
        • Woods A.J.
        • Antal A.
        • Bikson M.
        • Boggio P.S.
        • Brunoni A.R.
        • Celnik P.
        • et al.
        A technical guide to tDCS, and related non-invasive brain stimulation tools.
        Clin Neurophysiol. 2016; 127: 1031-1048https://doi.org/10.1016/j.clinph.2015.11.012
        • Paneri B.
        • Adair D.
        • Thomas C.
        • Khadka N.
        • Patel V.
        • Tyler W.J.
        • et al.
        Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects.
        Brain Stimul. 2016; 9: 740-754https://doi.org/10.1016/j.brs.2016.05.008
        • Brunoni A.R.
        • Amadera J.
        • Berbel B.
        • Volz M.S.
        • Rizzerio B.G.
        • Fregni F.
        A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation.
        Int J Neuropsychopharmacol. 2011; 14 (Epub 2011/02/16): 1133-1145https://doi.org/10.1017/s1461145710001690
      7. Giordano J. Conditions for consent to the use of neurotechnology: a preparatory neuroethical approach to risk assessment and reduction: AJOB Neuroscience: Vol 6, No 4. AJOB-Neurosci 2015;6(4):12-14. Epub 11/30/2015. doi: https://doi.org/10.1080/21507740.2015.1094557.

        • Giordano J.D.
        • Donald
        Toward right and good use of brain-machine interfacing neurotechnologies: ethical issues and implications for guidelines and policy.
        Cogn Tech J. 2011; 15: 5-10
        • Giordano J.
        Neurotechnology, Evidence, and Ethics: on stewardship and the good in research and practice.
        Pract Pain Manag. 2010; 10: 63-69
        • U.S. Food and Drug Adminstration Center for Devices and Radiological Health
        Draft guidance for industry and FDA staff: class II special controls guidance document: cutaneous electrode.
        FDA: U.S. Department of health and human Services Food and drug administration, Center for Devices and Radiological Health, 2010
        • U.S. Food and Drug Administration Center for Devices and Radiological Health
        Draft guidance for industry and FDA staff: class II special controls guidance document: electroconductive media.
        U.S. Department of Health and Human Services Food and Drug Administration, Center for Devices and Radiological Health, 2010
        • U.S. Food and Drug Administration Center for Devices and Radiological Health
        Guidance for the content of premarket submissions for software contained in medical devices.
        2010
        • U.S. Department of Health and Human Services Food and Drug Administration
        Research CfDaRHaCfBEa General principles of software validation. 2002
        • U.S. Food and Drug Administration Center for Devices and Radiological Health
        Mobile medical applications guidance for industry and Food and drug administration staff.
        2013
        • U.S. Department of Health and Human Services Food and Drug Administration
        Center for Devices and Radiological Health Applying human factors and usability engineering to medical devices. 2016
        • Thakral G.
        • LaFontaine J.
        • Najafi B.
        • Talal T.K.
        • Kim P.
        • Lavery L.A.
        Electrical stimulation to accelerate wound healing.
        Diabet Foot Ankle. 2013; 4: 22081https://doi.org/10.3402/dfa.v4i0.22081
        • Deng Z.D.
        • Lisanby S.H.
        • Peterchev A.V.
        Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study.
        J Neural Eng. 2011; 8 (Epub 01/21) (Epub 2011 Jan 19): 016007https://doi.org/10.1088/1741-2560/8/1/016007
        • Kent A.R.
        • Grill W.M.
        Neural origin of evoked potentials during thalamic deep brain stimulation.
        J Neurophysiol. 2013; 110: 826-843https://doi.org/10.1152/jn.00074.2013
        • McIntyre C.C.
        • Mori S.
        • Sherman D.L.
        • Thakor N.V.
        • Vitek J.L.
        Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus.
        Clin Neurophysiol. 2004; 115: 589-595https://doi.org/10.1016/j.clinph.2003.10.033
        • McIntyre C.C.
        • Savasta M.
        • Kerkerian-Le Goff L.
        • Vitek J.L.
        Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both.
        Clin Neurophysiol. 2004; 115: 1239-1248https://doi.org/10.1016/j.clinph.2003.12.024
        • Sahlsten H.
        • Isohanni J.
        • Haapaniemi J.
        • Salonen J.
        • Paavola J.
        • Loyttyniemi E.
        • et al.
        Electric field navigated transcranial magnetic stimulation for chronic tinnitus: a pilot study.
        Int J Audiol. 2015; 54 (Epub 06/19) (Epub 2015 Jun 18): 899-909https://doi.org/10.3109/14992027.2015.1054041
        • Sahlsten H.
        • Virtanen J.
        • Joutsa J.
        • Niinivirta-Joutsa K.
        • Loyttyniemi E.
        • Johansson R.
        • et al.
        Electric field-navigated transcranial magnetic stimulation for chronic tinnitus: a randomized, placebo-controlled study.
        Int J Audiol. 2017; 56 (Epub 04/19) (Epub 2017 Apr 18): 692-700https://doi.org/10.1080/14992027.2017.1313461
        • Lee W.H.
        • Lisanby S.H.
        • Laine A.F.
        • Peterchev A.V.
        Stimulation strength and focality of electroconvulsive therapy with individualized current amplitude: a preclinical study.
        Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 6430-6433https://doi.org/10.1109/EMBC.2012.6347466
        • Lee W.H.
        • Lisanby S.H.
        • Laine A.F.
        • Peterchev A.V.
        Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.
        Conf Proc IEEE Eng Med Biol Soc. 2013; 2013: 3082-3085https://doi.org/10.1109/EMBC.2013.6610192
        • De Marco Garcia N.V.
        • Fishell G.
        Subtype-selective electroporation of cortical interneurons.
        J Vis Exp. 2014; 90: e51518https://doi.org/10.3791/51518
        • Kim N.H.
        • Kim S.
        • Hong J.S.
        • Jeon S.H.
        • Huh S.O.
        Application of in utero electroporation of G-protein coupled receptor (GPCR) genes, for subcellular localization of hardly identifiable GPCR in mouse cerebral cortex.
        Mol Cells. 2014; 37: 554-561https://doi.org/10.14348/molcells.2014.0159
      8. U.S. Food and Drug Administration Center for Devices and Radiological Health. De Novo 510(k) Summary for Cefaly Device (K122566) 2012 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/reviews/K122566.pdf.

      9. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Myotrac Infiniti (K053434) 2006 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf5/K053434.pdf.

      10. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Sterling Medical Impulse 3 Stimulator (K121305) 2012 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf12/K121305.pdf.

      11. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for FM 10/C Cranial Electrical Nerve Stimulator (K090052) 2009 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf9/K090052.pdf.

      12. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for HealthMate Forever Pro-8AB (K121757) 2012 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf12/K121757.pdf.

      13. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Tanyx (K123866) 2013 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf12/K123866.pdf.

      14. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for PM3030 (K110068) 2011 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf11/K110068.pdf.

      15. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Hi-Dow JQ-5C (K102598) 2011 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf10/K102598.pdf.

      16. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Rejuvenique (K011935) 2001 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf/k011935.pdf.

      17. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Nu Skin Facial Spa (K122711) 2013 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf12/K122711.pdf.

      18. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Jiajian CMN Stimulator (K130768) 2013 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf13/K130768.pdf.

      19. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for Jiajian Electra-acupuncture Stimulators (K122812) 2013 [December 30, 2014]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf12/K122812.pdf.

      20. U.S. Food and Drug Administration Center for Devices and Radiological Health. Premarket Notification 510(k) Summary for NuFace Plus Device (K103472) 2010. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf10/K103472.pdf.

      21. Empi I. Hybresis Patch Instructions for Use 2007 [Document Downloaded on December 30, 2014]. Available from: http://www.djoglobal.com/sites/default/files/360353.pdf.

      22. Medical T. IontoPatch Overview 2013 [December 30, 2014]. Available from: http://www.iontopatch.com/index.html.

      23. Company RAF. Fischer Model MD-2 Galvanic Unit Instruction Manual 2012 [Document Downloaded on December 30, 2014]. Available from: http://www.rafischer.com/share/md2-manual-web.pdf.

      24. Company RAF. Fischer Model MD-1a Galvanic Unit Instruction Manual 2013 [Document Downloaded on December 30, 2014]. Available from: http://www.rafischer.com/share/md1a-manual.pdf.

      25. Chattem I. IcyHot Smart Relief User Manual 2014 [December 30, 2014]. Available from: http://www.smartrelief.com/wp-content/uploads/2014/02/IH_SmartRelief_Inst_Manual.pdf.

      26. Ltd B-MR. Neurotech KneeHab XP Instructions for Use 2012 [December 30, 2014]. Available from: http://www.neurotechgroup.com/library/us/downloads/Kneehab_and_Tens/US%20Kneehab+%20Controller%20IM%20Rev%202.pdf.

        • Russell M.
        • Goodman T.
        • Wang Q.
        • Groshong B.
        • Lyeth B.G.
        Gender differences in current received during transcranial electrical stimulation.
        Front Psychiatry. 2014; 5: 104https://doi.org/10.3389/fpsyt.2014.00104
        • Javadi A.H.
        • Brunec I.K.
        • Walsh V.
        • Penny W.D.
        • Spiers H.J.
        Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration.
        Neuroimage. 2014; 102: 451-457https://doi.org/10.1016/j.neuroimage.2014.08.016
        • Truong D.Q.
        • Magerowski G.
        • Blackburn G.L.
        • Bikson M.
        • Alonso-Alonso M.
        Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines.
        Neuroimage Clin. 2013; 2: 759-766https://doi.org/10.1016/j.nicl.2013.05.011