Advertisement
Research Article| Volume 11, ISSUE 4, P727-733, July 2018

Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo

Published:March 13, 2018DOI:https://doi.org/10.1016/j.brs.2018.03.006

      Highlights

      • Patients with DBS electrodes serve as natural models to detect electric fields inside the brain.
      • We recorded voltage changes generated by tDCS at the subthalamic level in human brain in vivo.
      • Voltage changes depend on the current level and montage of tDCS.
      • Inter-electrode spacing affected tDCS-generated voltage changes.

      Abstract

      Background

      Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted.

      Objective

      We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo.

      Methods

      Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages.

      Results

      Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages.

      Conclusions

      Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Lefaucheur J.-P.
        • Antal A.
        • Ayache S.S.
        • Benninger D.H.
        • Brunelin J.
        • Cogiamanian F.
        • et al.
        Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).
        Clin Neurophysiol. 2017; 128: 56-92
        • Underwood E.
        NEUROSCIENCE. Cadaver study challenges brain stimulation methods.
        Science. 2016; 352: 397
        • Datta A.
        • Bansal V.
        • Diaz J.
        • Patel J.
        • Reato D.
        • Bikson M.
        Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
        Brain Stimulation. 2009; 2 (e1): 201-207
        • Opitz A.
        • Falchier A.
        • Yan C.G.
        • Yeagle E.M.
        • Linn G.S.
        • Megevand P.
        • et al.
        Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.
        Sci Rep. 2016; 6: 31236
        • Huang Y.
        • Liu A.A.
        • Lafon B.
        • Friedman D.
        • Dayan M.
        • Wang X.
        • et al.
        Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.
        Elife. 2017; 6
        • Ruhnau P.
        • Rufener K.S.
        • Heinze H.J.
        • Zaehle T.
        Sailing in a sea of disbelief: in vivo measurements of transcranial electric stimulation in human subcortical structures.
        Brain Stimul. 2018; 11: 241-243
        • Voroslakos M.
        • Takeuchi Y.
        • Brinyiczki K.
        • Zombori T.
        • Oliva A.
        • Fernandez-Ruiz A.
        • et al.
        Direct effects of transcranial electric stimulation on brain circuits in rats and humans.
        Nat Commun. 2018; 9: 483
        • Wilson C.J.
        Oscillators and oscillations in the basal ganglia.
        Neuroscientist. 2015; 21: 530-539
        • Chhatbar P.Y.
        • Chen R.
        • Deardorff R.
        • Dellenbach B.
        • Kautz S.A.
        • George M.S.
        • et al.
        Safety and tolerability of transcranial direct current stimulation to stroke patients - a phase I current escalation study.
        Brain Stimul. 2017; 10: 553-559
        • Hahn C.
        • Rice J.
        • Macuff S.
        • Minhas P.
        • Rahman A.
        • Bikson M.
        Methods for extra-low voltage transcranial direct current stimulation: current and time dependent impedance decreases.
        Clin Neurophysiol. 2013; 124: 551-556
        • Rosendal T.
        Studies on the conducting properties of the human skin to direct current.
        Acta Physiol. 1943; 5: 130-151
        • Sackeim H.A.
        Physical properties of the ECT stimulus.
        J ECT. 1994; 10: 140-152
        • Sackeim H.A.
        • Long J.
        • Luber B.
        • Moeller J.R.
        • Prohovnik I.
        • Devanand D.P.
        • et al.
        Physical properties and quantification of the ECT stimulus: I. Basic principles.
        Convuls Ther. 1994; 10: 93-123
        • Andersen K.E.
        • Maibach H.I.
        Black and white human skin differences.
        J Am Acad Dermatol. 1979; 1: 276-282
        • Lee W.
        • Seo H.
        • Kim S.
        • Cho M.
        • Lee S.
        • Kim T.-S.
        Influence of white matter anisotropy on the effects of transcranial direct current stimulation: a finite element study.
        in: 13th international conference on biomedical engineering. Springer, 2009: 460-464
        • Suh H.S.
        • Kim S.H.
        • Lee W.H.
        • Kim T.S.
        Realistic simulation of transcranial direct current stimulation via 3-d high-resolution finite element analysis: effect of tissue anisotropy.
        Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 638-641
        • Stephens W.G.S.
        The current-voltage relationship in human skin.
        Med Electron Biol Eng. 1963; 1: 389-399