Advertisement
Research Article| Volume 11, ISSUE 5, P974-981, September 2018

Transcranial direct current brain stimulation decreases impulsivity in ADHD

Published:April 23, 2018DOI:https://doi.org/10.1016/j.brs.2018.04.016

      Highlights

      • We examined the treatment potential of anodal tDCS stimulation for adult ADHD.
      • Three TDCS sessions reduced false positives on a continuous performance task.
      • Repeated tDCS over the left DLPFC may treat impulsivity in adult ADHD.

      Abstract

      Background

      Impulsivity is a core deficit in attention deficit hyperactivity disorder (ADHD). Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been shown to modulate cognitive control circuits and could enhance DLPFC activity, leading to improved impulse control in ADHD.

      Objective

      Hypothesis: We predicted 2.0 mA anodal stimulation (tDCS) versus sham stimulation applied over the left DLPFC would improve Conners Continuous Performance Task (CPT) scores. Our secondary hypothesis predicted that stop signal task (SST) reaction time (SSRT) would decrease with tDCS (versus sham).

      Methods

      Thirty-seven participants completed two periods of three tDCS (or sham) sessions two weeks apart in a within-subject, double-blind, counterbalanced order. Participants performed a fractal N-back training task concurrent with tDCS (or sham) stimulation. Participants completed the CPT and SST at the beginning of treatment (baseline), at the end of the treatment, and at a 3-day post-stimulation follow-up.

      Results

      There was a significant stimulation condition by session interaction for CPT false positive scores (χ2 = 15.44, p < 0.001) driven by a decrease in false positive errors from baseline to end of treatment in the tDCS group (β = −0.36, 95% Confidence Interval (CI) −0.54 to −0.18, p < 0.001). This effect did not persist at follow-up (β = −0.13, p > 0.05). There was no significant stimulation condition by session interaction effect on CPT true positive errors or response time (ps > 0.05). No significant change in SSRT performance was observed (p > 0.05).

      Conclusion

      These findings suggest that stimulation of the left DLPFC with tDCS can improve impulsivity symptoms in ADHD, supporting the therapeutic potential for tDCS in adult ADHD patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Volkow N.D.
        • Swanson J.M.
        Clinical practice: adult attention deficit-hyperactivity disorder.
        N Engl J Med. 2013; 369: 1935-1944
        • Sharma A.
        • Couture J.
        A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD).
        Ann Pharmacother. 2014; 48: 209-225
        • Lensing M.B.
        • Zeiner P.
        • Sandvik L.
        • Opjordsmoen S.
        Four-year outcome in psychopharmacologically treated adults with attention-deficit/hyperactivity disorder: a questionnaire survey.
        J Clin Psychiatr. 2013; 74: e87-e93
        • Spencer T.
        • Biederman J.
        • Wilens T.
        Pharmacotherapy of attention deficit hyperactivity disorder.
        Child Adolesc Psychiatr Clin N Am. 2000; 9: 77-97
        • Bush G.
        Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder.
        Biol Psychiatr. 2011; 69: 1160-1167
        • Ortiz N.
        • Parsons A.
        • Whelan R.
        • Brennan K.
        • Agan M.L.
        • O'Connell R.
        • et al.
        Decreased frontal, striatal and cerebellar activation in adults with ADHD during an adaptive delay discounting task.
        Acta Neurobiol Exp (Wars). 2015; 75: 326-338
        • Francx W.
        • Oldehinkel M.
        • Oosterlaan J.
        • Heslenfeld D.
        • Hartman C.A.
        • Hoekstra P.J.
        • et al.
        The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder.
        Cortex. 2015; 73: 62-72
        • Salavert J.
        • Ramos-Quiroga J.A.
        • Moreno-Alcazar A.
        • Caseras X.
        • Palomar G.
        • Radua J.
        • et al.
        Functional imaging changes in the medial prefrontal cortex in adult ADHD.
        J Atten Disord. 2015; 22: 679-693
        • Cortese S.
        • Kelly C.
        • Chabernaud C.
        • Proal E.
        • Di Martino A.
        • Milham M.P.
        • et al.
        Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies.
        Am J Psychiatry. 2012; 169: 1038-1055
        • Passarotti A.M.
        • Sweeney J.A.
        • Pavuluri M.N.
        Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder.
        Psychiatry Res. 2010; 181: 36-43
        • Barkley R.A.
        Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD.
        Psychol Bull. 1997; 121: 65-94
        • Wender P.H.
        • Wolf L.E.
        • Wasserstein J.
        Adults with ADHD. An overview.
        Ann N Y Acad Sci. 2001; 931: 1-16
        • Rohlf H.
        • Jucksch V.
        • Gawrilow C.
        • Huss M.
        • Hein J.
        • Lehmkuhl U.
        • et al.
        Set shifting and working memory in adults with attention-deficit/hyperactivity disorder.
        J Neural Transm (Vienna). 2012; 119: 95-106
        • Matthies S.
        • Philipsen A.
        • Svaldi J.
        Risky decision making in adults with ADHD.
        J Behav Ther Exp Psychiatr. 2012; 43: 938-946
        • Conners C.K.
        • Staff M.
        Conners' continuous performance test third edition (Conners CPT 3).
        Multi-Health Systems Inc., North Tonwanda, NY2015
        • Logan G.D.
        • Schahar R.J.
        • Tannock R.
        Impulsivity and inhibitory control.
        Psychol Sci. 1997; 8: 60-66
        • Raz S.
        • Bar-Haim Y.
        • Sadeh A.
        • Dan O.
        Reliability and validity of the online continuous performance test among young adults.
        Assessment. 2014; 21: 108-118
        • Nichols S.L.
        • Waschbusch D.A.
        A review of the validity of laboratory cognitive tasks used to assess symptoms of ADHD.
        Child Psychiatr Hum Dev. 2004; 34: 297-315
        • Egeland J.
        • Kovalik-Gran I.
        Measuring several aspects of attention in one test: the factor structure of conners's continuous performance test.
        J Atten Disord. 2010; 13: 339-346
        • Egeland J.
        • Kovalik-Gran I.
        Validity of the factor structure of Conners' CPT.
        J Atten Disord. 2010; 13: 347-357
        • Teicher M.H.
        • Polcari A.
        • Fourligas N.
        • Vitaliano G.
        • Navalta C.P.
        Hyperactivity persists in male and female adults with ADHD and remains a highly discriminative feature of the disorder: a case-control study.
        BMC Psychiatr. 2012; 12: 190
        • Frazier T.W.
        • Demaree H.A.
        • Youngstrom E.A.
        Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder.
        Neuropsychology. 2004; 18: 543-555
        • Hervey A.S.
        • Epstein J.N.
        • Curry J.F.
        Neuropsychology of adults with attention-deficit/hyperactivity disorder: a meta-analytic review.
        Neuropsychology. 2004; 18: 485-503
        • Malloy-Diniz L.
        • Fuentes D.
        • Leite W.B.
        • Correa H.
        • Bechara A.
        Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness.
        J Int Neuropsychol Soc. 2007; 13: 693-698
        • Fernandez-Jaen A.
        • Fernandez-Mayoralas D.M.
        • Pardos A.
        • Calleja-Perez B.
        • Munoz Jareno N.
        Clinical and cognitive response to extended-release methylphenidate (Medikinet) in attention deficit/hyperactivity disorder: efficacy evaluation.
        Adv Ther. 2009; 26: 1097-1110
        • Boonstra A.M.
        • Kooij J.J.
        • Oosterlaan J.
        • Sergeant J.A.
        • Buitelaar J.K.
        Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD?.
        J Clin Exp Neuropsychol. 2005; 27: 278-298
        • Bedard A.C.
        • Stein M.A.
        • Halperin J.M.
        • Krone B.
        • Rajwan E.
        • Newcorn J.H.
        Differential impact of methylphenidate and atomoxetine on sustained attention in youth with attention-deficit/hyperactivity disorder.
        J Child Psychol Psychiatr. 2015; 56: 40-48
        • Logan G.D.
        • Cowan W.B.
        • Davis K.A.
        On the ability to inhibit simple and choice reaction time responses: a model and a method.
        J Exp Psychol Hum Percept Perform. 1984; 10: 276-291
        • Demirtas-Tatlidede A.
        • Vahabzadeh-Hagh A.M.
        • Pascual-Leone A.
        Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders?.
        Neuropharmacology. 2013; 64: 566-578
        • Fregni F.
        • Boggio P.S.
        • Nitsche M.
        • Bermpohl F.
        • Antal A.
        • Feredoes E.
        • et al.
        Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory.
        Exp Brain Res. 2005; 166: 23-30
        • Dedoncker J.
        • Brunoni A.R.
        • Baeken C.
        • Vanderhasselt M.A.
        A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters.
        Brain Stimul. 2016; 9: 501-517
        • Nitsche M.A.
        • Cohen L.G.
        • Wassermann E.M.
        • Priori A.
        • Lang N.
        • Antal A.
        • et al.
        Transcranial direct current stimulation: state of the art 2008.
        Brain Stimul. 2008; 1: 206-223
        • Dockery C.A.
        • Hueckel-Weng R.
        • Birbaumer N.
        • Plewnia C.
        Enhancement of planning ability by transcranial direct current stimulation.
        J Neurosci. 2009; 29: 7271-7277
        • Hsu T.Y.
        • Tseng L.Y.
        • Yu J.X.
        • Kuo W.J.
        • Hung D.L.
        • Tzeng O.J.
        • et al.
        Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.
        Neuroimage. 2011; 56: 2249-2257
        • Meinzer M.
        • Lindenberg R.
        • Antonenko D.
        • Flaisch T.
        • Floel A.
        Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.
        J Neurosci. 2013; 33: 12470-12478
        • Cosmo C.
        • Baptista A.F.
        • de Araujo A.N.
        • do Rosario R.S.
        • Miranda J.G.
        • Montoya P.
        • et al.
        A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention-deficit/hyperactivity disorder.
        PLoS One. 2015; 10e0135371
        • Breitling C.
        • Zaehle T.
        • Dannhauer M.
        • Bonath B.
        • Tegelbeckers J.
        • Flechtner H.H.
        • et al.
        Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS).
        Front Cell Neurosci. 2016; 10: 72
        • Boggio P.S.
        • Ferrucci R.
        • Rigonatti S.P.
        • Covre P.
        • Nitsche M.
        • Pascual-Leone A.
        • et al.
        Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease.
        J Neurol Sci. 2006; 249: 31-38
        • Hoy K.E.
        • Emonson M.R.
        • Arnold S.L.
        • Thomson R.H.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls.
        Neuropsychologia. 2013; 51: 1777-1784
        • Hunter M.A.
        • Coffman B.A.
        • Trumbo M.C.
        • Clark V.P.
        Tracking the neuroplastic changes associated with transcranial direct current stimulation: a push for multimodal imaging.
        Front Hum Neurosci. 2013; 7: 495
        • Ditye T.
        • Jacobson L.
        • Walsh V.
        • Lavidor M.
        Modulating behavioral inhibition by tDCS combined with cognitive training.
        Exp Brain Res. 2012; 219: 363-368
        • Elmasry J.
        • Loo C.
        • Martin D.
        A systematic review of transcranial electrical stimulation combined with cognitive training.
        Restor Neurol Neurosci. 2015; 33: 263-278
        • Trumbo M.C.
        • Matzen L.E.
        • Coffman B.A.
        • Hunter M.A.
        • Jones A.P.
        • Robinson C.S.
        • et al.
        Enhanced working memory performance via transcranial direct current stimulation: the possibility of near and far transfer.
        Neuropsychologia. 2016; 93: 85-96
        • Keeser D.
        • Meindl T.
        • Bor J.
        • Palm U.
        • Pogarell O.
        • Mulert C.
        • et al.
        Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI.
        J Neurosci. 2011; 31: 15284-15293
        • Sotnikova A.
        • Soff C.
        • Tagliazucchi E.
        • Becker K.
        • Siniatchkin M.
        Transcranial direct current stimulation modulates neuronal networks in attention deficit hyperactivity disorder.
        Brain Topogr. 2017; 30: 656-672
        • Ho K.A.
        • Taylor J.L.
        • Chew T.
        • Galvez V.
        • Alonzo A.
        • Bai S.
        • et al.
        The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions.
        Brain Stimul. 2016; 9: 1-7
        • Soff C.
        • Sotnikova A.
        • Christiansen H.
        • Becker K.
        • Siniatchkin M.
        Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder.
        J Neural Transm (Vienna). 2017; 124: 133-144
        • Cachoeira C.T.
        • Leffa D.T.
        • Mittelstadt S.D.
        • Mendes L.S.
        • Brunoni A.R.
        • Pinto J.V.
        • et al.
        Positive effects of transcranial direct current stimulation in adult patients with attention-deficit/hyperactivity disorder - a pilot randomized controlled study.
        Psychiatry Res. 2017; 247: 28-32
        • First M.B.
        • Williams J.B.W.
        • Karg R.S.
        • Spitzer R.L.
        Structured clinical interview for DSM-5–research version.
        American Pyschiatric Association, Arlington, VA2015
        • Zachary R.A.
        Shipley Institute of Living scale: Revised manual.
        Los Angeles Western Psyschological Services, 1986
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Klem G.H.
        • Luders H.O.
        • Jasper H.H.
        • Elger C.
        The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology.
        Electroencephalogr Clin Neurophysiol Supplement. 1999; 52: 3-6
        • Brunoni A.R.
        • Vanderhasselt M.A.
        Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis.
        Brain Cogn. 2014; 86: 1-9
        • Boggio P.S.
        • Bermpohl F.
        • Vergara A.O.
        • Muniz A.L.
        • Nahas F.H.
        • Leme P.B.
        • et al.
        Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression.
        J Affect Disord. 2007; 101: 91-98
        • Teo F.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls.
        Front Psychiatr. 2011; 2: 45
        • Ohn S.H.
        • Park C.I.
        • Yoo W.K.
        • Ko M.H.
        • Choi K.P.
        • Kim G.M.
        • et al.
        Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory.
        Neuroreport. 2008; 19: 43-47
        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol Official J Int Fed Clin Neurophysiol. 2006; 117: 845-850
        • Ragland J.D.
        • Turetsky B.I.
        • Gur R.C.
        • Gunning-Dixon F.
        • Turner T.
        • Schroeder L.
        • et al.
        Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks.
        Neuropsychology. 2002; 16: 370-379
        • Braver T.S.
        • Cohen J.D.
        • Nystrom L.E.
        • Jonides J.
        • Smith E.E.
        • Noll D.C.
        A parametric study of prefrontal cortex involvement in human working memory.
        Neuroimage. 1997; 5: 49-62
        • Erdodi L.A.
        • Lajiness-O'Neill R.
        • Saules K.K.
        Order of Conners' CPT-II administration within a cognitive test battery influences ADHD indices.
        J Atten Disord. 2010; 14: 43-51
        • Kessler S.K.
        • Turkeltaub P.E.
        • Benson J.G.
        • Hamilton R.H.
        Differences in the experience of active and sham transcranial direct current stimulation.
        Brain Stimul. 2012; 5: 155-162
        • Sankoh A.J.
        • Huque M.F.
        • Dubey S.D.
        Some comments on frequently used multiple endpoint adjustment methods in clinical trials.
        Stat Med. 1997; 16: 2529-2542
        • Loughead J.
        • Wileyto E.P.
        • Valdez J.N.
        • Sanborn P.
        • Tang K.
        • Strasser A.A.
        • et al.
        Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype.
        Mol Psychiatr. 2009; 14: 820-826
        • Shiozawa P.
        • Fregni F.
        • Bensenor I.M.
        • Lotufo P.A.
        • Berlim M.T.
        • Daskalakis J.Z.
        • et al.
        Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis.
        Int J Neuropsychopharmacol. 2014; 17: 1443-1452
        • Bron T.I.
        • Bijlenga D.
        • Boonstra A.M.
        • Breuk M.
        • Pardoen W.F.
        • Beekman A.T.
        • et al.
        OROS-methylphenidate efficacy on specific executive functioning deficits in adults with ADHD: a randomized, placebo-controlled cross-over study.
        Eur Neuropsychopharmacol. 2014; 24: 519-528
        • Kollins S.H.
        • Anastopoulos A.D.
        • Lachiewicz A.M.
        • FitzGerald D.
        • Morrissey-Kane E.
        • Garrett M.E.
        • et al.
        SNPs in dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene (NET) are associated with continuous performance task (CPT) phenotypes in ADHD children and their families.
        Am J Med Genet B Neuropsychiatr Genet. 2008; 147B: 1580-1588
        • Barkley R.A.
        The ecological validity of laboratory and analogue assessment methods of ADHD symptoms.
        J Abnorm Child Psychol. 1991; 19: 149-178
        • Inoue K.
        • Nadaoka T.
        • Oiji A.
        • Morioka Y.
        • Totsuka S.
        • Kanbayashi Y.
        • et al.
        Clinical evaluation of attention-deficit hyperactivity disorder by objective quantitative measures.
        Child Psychiatry Hum Dev. 1998; 28: 179-188
        • Epstein J.N.
        • Erkanli A.
        • Conners C.K.
        • Klaric J.
        • Costello J.E.
        • Angold A.
        Relations between continuous performance test performance measures and ADHD behaviors.
        J Abnorm Child Psychol. 2003; 31: 543-554
        • Quay H.C.
        Theories of ADDH.
        J Am Acad Child Adolesc Psychiatry. 1988; 27: 262-263
        • Shang C.Y.
        • Sheng C.
        • Yang L.K.
        • Chou T.L.
        • Gau S.S.
        Differential brain activations in adult attention-deficit/ hyperactivity disorder subtypes: a counting Stroop functional MRI study.
        Brain Imaging Behav. 2017; https://doi.org/10.1007/s1168201797490
        • Winstanley C.A.
        • Eagle D.M.
        • Robbins T.W.
        Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies.
        Clin Psychol Rev. 2006; 26: 379-395
        • Engert V.
        • Pruessner J.C.
        Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate.
        Curr Neuropharmacol. 2008; 6: 322-328
        • Nystrom L.E.
        • Braver T.S.
        • Sabb F.W.
        • Delgado M.R.
        • Noll D.C.
        • Cohen J.D.
        Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.
        Neuroimage. 2000; 11: 424-446
        • Phillips A.G.
        • Ahn S.
        • Floresco S.B.
        Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task.
        J Neurosci. 2004; 24: 547-553
        • Bechara A.
        Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective.
        Nat Neurosci. 2005; 8: 1458-1463
        • Jansen J.M.
        • Daams J.G.
        • Koeter M.W.
        • Veltman D.J.
        • van den Brink W.
        • Goudriaan A.E.
        Effects of non-invasive neurostimulation on craving: a meta-analysis.
        Neurosci Biobehav Rev. 2013; 37: 2472-2480
        • Shen B.
        • Yin Y.
        • Wang J.
        • Zhou X.
        • McClure S.M.
        • Li J.
        High-definition tDCS alters impulsivity in a baseline-dependent manner.
        Neuroimage. 2016; 143: 343-352
        • Metzuyanim-Gorlick S.
        • Mashal N.
        The effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on cognitive inhibition.
        Exp Brain Res. 2016; 234: 1537-1544
        • Oliveira J.F.
        • Zanao T.A.
        • Valiengo L.
        • Lotufo P.A.
        • Bensenor I.M.
        • Fregni F.
        • et al.
        Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder.
        Neurosci Lett. 2013; 537: 60-64
        • Wolkenstein L.
        • Plewnia C.
        Amelioration of cognitive control in depression by transcranial direct current stimulation.
        Biol Psychiatry. 2013; 73: 646-651
        • Fecteau S.
        • Knoch D.
        • Fregni F.
        • Sultani N.
        • Boggio P.
        • Pascual-Leone A.
        Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study.
        J Neurosci. 2007; 27: 12500-12505
        • Rubia K.
        • Russell T.
        • Overmeyer S.
        • Brammer M.J.
        • Bullmore E.T.
        • Sharma T.
        • et al.
        Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks.
        Neuroimage. 2001; 13: 250-261
        • Schachar R.
        • Logan G.D.
        • Robaey P.
        • Chen S.
        • Ickowicz A.
        • Barr C.
        Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactivity disorder.
        J Abnorm Child Psychol. 2007; 35: 229-238
        • Soltaninejad Z.
        • Nejati V.
        • Ekhtiari H.
        Effect of anodal and cathodal transcranial direct current stimulation on DLPFC on modulation of inhibitory control in ADHD.
        J Atten Disord. 2015; https://doi.org/10.1177/1087054715618792
        • Sebastian A.
        • Pohl M.F.
        • Kloppel S.
        • Feige B.
        • Lange T.
        • Stahl C.
        • et al.
        Disentangling common and specific neural subprocesses of response inhibition.
        Neuroimage. 2013; 64: 601-615
        • Swick D.
        • Ashley V.
        • Turken U.
        Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks.
        Neuroimage. 2011; 56: 1655-1665
        • Berryhill M.E.
        • Peterson D.J.
        • Jones K.T.
        • Stephens J.A.
        Hits and misses: leveraging tDCS to advance cognitive research.
        Front Psychol. 2014; 5: 800
        • Mulquiney P.G.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex.
        Clin Neurophysiol. 2011; 122: 2384-2389
        • Berryhill M.E.
        • Jones K.T.
        tDCS selectively improves working memory in older adults with more education.
        Neurosci Lett. 2012; 521: 148-151
        • Nejati V.
        • Salehinejad M.A.
        • Nitsche M.A.
        • Najian A.
        • Javadi A.H.
        Transcranial direct current stimulation improves executive dysfunctions in ADHD: implications for inhibitory control, interference control, working memory, and cognitive flexibility.
        J Atten Disord. 2017; (1087054717730611)
        • Martin D.M.
        • Liu R.
        • Alonzo A.
        • Green M.
        • Loo C.K.
        Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation.
        Exp Brain Res. 2014; 232: 3345-3351
        • O'Connell N.E.
        • Cossar J.
        • Marston L.
        • Wand B.M.
        • Bunce D.
        • Moseley G.L.
        • et al.
        Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA.
        PLoS One. 2012; 7e47514
        • Wallace D.
        • Cooper N.R.
        • Paulmann S.
        • Fitzgerald P.B.
        • Russo R.
        Perceived comfort and blinding efficacy in randomised sham-controlled transcranial direct current stimulation (tDCS) trials at 2 mA in young and older healthy adults.
        PLoS One. 2016; 11e0149703
        • Congdon E.
        • Altshuler L.L.
        • Mumford J.A.
        • Karlsgodt K.H.
        • Sabb F.W.
        • Ventura J.
        • et al.
        Neural activation during response inhibition in adult attention-deficit/hyperactivity disorder: preliminary findings on the effects of medication and symptom severity.
        Psychiatry Res. 2014; 222: 17-28
        • Batsikadze G.
        • Moliadze V.
        • Paulus W.
        • Kuo M.F.
        • Nitsche M.A.
        Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.
        J Physiol. 2013; 591: 1987-2000