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Neurostimulation is an increasingly implemented treatment for
a range of psychiatric disorders [1]. Population and disorder specific
approaches to brain stimulation continue to be documented, such
as the utility of intermittent theta-burst stimulation (iTBS) for
post-traumatic stress disorder (PTSD) [2,3]. Philip et al., 2019 [4]
conducted the first sham-controlled trial of iTBS in Veterans with
PTSD, finding statistically significant improvement in social and
occupational function, and clinically meaningful, albeit non-
significant, reductions in PTSD symptoms following two-weeks of
active iTBS treatment. Despite the growing body of literature
demonstrating efficacy of iTBS, response variability persists, high-
lighting the need to identify inter-individual predictors of treat-
ment outcomes [5].

Genetic and epigenetic factors may represent biomarkers for the
prediction of TMS response. Polymorphisms of two candidate
genes, catechol-o-methyltransferase (COMT) and brain-derived
neurotrophic factor (BDNF) have been previously identified asmod-
erators of TMS response [6,7]. Evidence of genotypic moderation
implicates the potential for genetic screening in clinical decision
making, however the complexity of molecular processes involved
in gene expression brings to question whether epigenetic systems
further mediate TMS outcomes. Low level magnetic stimulation
has been linked to DNA methylation, a regulatory mechanism of
gene suppression, in human neural cells [8]. The impact of mag-
netic stimulation on DNAmethylation coupled with evidence of ge-
netic moderation for TMS response warrants the study of whether
DNAmethylation contributes toTMS treatment response variability
observed in clinical samples.

To explore the relationship between epigenetic markers (partic-
ularly COMT and BDNF methylation) on iTBS treatment response,
DNA samples from whole blood were obtained from a subset
(n ¼ 23) of Veterans enrolled in Philip et al., 2019 [4] at baseline
and end of two-week double-blind treatment phase. Treatment
response was operationalized via change across the following mea-
sures obtained at both time points: Clinical Administered PTSD
Scale for DSM-5 (CAPS), PTSD Checklist for DSM-5 (PCL-5), Social
and Occupational Functioning Assessment Scale (SOFAs), Quality
of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q) and In-
ventory of Depressive Symptomatology Self-Report (IDS-SR). Pyro-
sequencing across two COMT and three BDNF CpG sites were
completed. The average across the COMT and BDNF sites were
used to create COMT average and BDNF average scores with positive
values representing a reduction in methylation over time and
therefore a putative increase in genetic expression, and negative
https://doi.org/10.1016/j.brs.2022.03.005
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values denoting an increase in methylation and putatively greater
genetic suppression.

Statistical analyses included a series of linear regressions in
which change on each self-report measure was predicted by treat-
ment group (active (n¼ 11) vs. sham (n¼ 12)) and change in epige-
netic values (Table 1). Additional models controlled for epigenetic
interaction effects. The significant benefit of iTBS over sham on
change in IDS-SR scores reported by Philip et al., 2019 [4] was
reproduced in the subsample (b¼�8.6, p¼ 0.049) with further sig-
nificant changes in CAPS (b ¼ �5.9, p ¼ 0.02) and SOFAS (b ¼ 7.2,
p ¼ 0.03) scores observed between treatment groups for those par-
ticipants with epigenetic data. No main effects of change in BDNF
average or change in COMT average values were found. However,
a crossover interaction was detected in the PSTD model, indicating
that for those in the active treatment group, a greater change in
COMT average was related to an attenuation of PSTD symptom
reduction at the end of the treatment phase when compared to
those with lower change in COMT average values (b ¼ 2.9,
p ¼ 0.007). Once controlling for this interaction, we saw significant
main effects of treatment group (b¼�23.3, p¼ 0.01) and change in
COMT average (b ¼ �2.1, p ¼ 0.02). In contrast, within the sham
condition, greater change in COMT average was associated with a
modest increase in PCL-5 scores over time. Overall, active iTBS
treatment and greater change in average COMT values (signifying
a reduction in DNA methylation over time) resulted in greater
PCL-5 improvement.

These findings preliminarily indicate an interaction between
epigenetic change in COMT methylation and verum iTBS response,
such that an increase in DNA methylation over time was associated
with poorer response. These interpretations require caution given
the small sample size and relatively narrow assessment of DNA
methylation. More comprehensive and costly analytic procedures,
such as methylome wide association studies, might serve to better
classify the biomarkers implicated in response variability. These ca-
veats aside, to our knowledge this is the first indication of a rela-
tionship between iTBS and changes in epigenetic status,
indicating novel mechanism(s) related to TMS. Once precise epige-
netic markers are identified, they have the potential to inform the
development of pharmacological adjuncts that either bolster iTBS
response or result in a similar effect. An additional line of inquiry
involves the dose-dependent nature of neurostimulation. Philip
et al., 2019 [4] reported the majority of iTBS benefit was observed
within the first week of treatment. Earlier and more frequent
DNA collectionmay aid in our understanding of whether epigenetic
changes are implicated in the temporal track of treatment response.
In summary, epigenetic mechanisms are associated with TMS
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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response variability and therefore may represent a novel target for
combined neurostimulation and pharmacological interventions in
those with psychiatric disorders.
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