Highlights
- •CCEPs recorded with hd-EEG and SEEG are correlated.
- •hd-EEG recording is highly sensitive to changes in stimulation parameters.
- •Hd-EEG responses to SPES are characterized by site-specific mean frequencies.
- •hd-EEG responses to SPES are larger than typical sensory evoked potentials.
- •An open dataset of simultaneous hd-EEG and SEEG during SPES is provided.
Abstract
Background
Objective
Methods
Results
Conclusions
Keywords
1. Introduction
- David O.
- Bastin J.
- Chabardès S.
- Minotti L.
- Kahane P.
- Cardinale F.
- Rizzi M.
- Vignati E.
- Cossu M.
- Castana L.
- D’Orio P.G.
- et al.
- Alarcón G.
- Jiménez-Jiménez D.
- Valentín A.
- Martín-López D.
- Cardinale F.
- Rizzi M.
- Vignati E.
- Cossu M.
- Castana L.
- D’Orio P.G.
- et al.
- David O.
- Bastin J.
- Chabardès S.
- Minotti L.
- Kahane P.
- Keller C.J.
- Honey C.J.
- Mégevand P.
- Entz L.
- Ulbert I.
- Mehta A.D.
- Cardinale F.
- Rizzi M.
- Vignati E.
- Cossu M.
- Castana L.
- D’Orio P.G.
- et al.
2. Materials and methods
2.1 Participants
2.2 Electrodes placement and localization
- Cardinale F.
- Rizzi M.
- Vignati E.
- Cossu M.
- Castana L.
- D’Orio P.G.
- et al.
2.3 Simultaneous SEEG and hd-EEG recordings

2.4 Single Pulse Electrical Stimulation
2.5 Physical, geometrical, and topological stimulation parameters
2.6 Data pre-processing
2.7 Amplitude analysis

2.8 Spectral analysis
2.9 Statistical analyses
2.9.1 The open dataset
3. Results and discussion
- Latreille V.
- von Ellenrieder N.
- Peter-Derex L.
- Dubeau F.
- Gotman J.
- Frauscher B.
3.1 General features of CCEPs were consistent between SEEG and hd-EEG
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, et al. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity.NeuroImage2021;237:118094.https://doi.org/10.1016/j.neuroimage.2021.118094.
3.2 Physical stimulation parameters: the effects of pulse intensity and width

3.3 Geometrical stimulation parameters: the effects of contact position with respect to the cortex

- Slopsema J.P.
- Peña E.
- Patriat R.
- Lehto L.J.
- Gröhn O.
- Mangia S.
- et al.
3.4 Interactions between physical and geometrical stimulation parameters
- Slopsema J.P.
- Peña E.
- Patriat R.
- Lehto L.J.
- Gröhn O.
- Mangia S.
- et al.
3.5 Topological stimulation parameters: the effect of stimulating different areas

3.6 Comparing invasive and non-invasive brain stimulation techniques

3.7 Limitations
4. Conclusions
Funding
CRediT authorship contribution statement
Declarations of competing interest
Acknowledgements
Appendix A. Supplementary data
- Multimedia component 1
References
- Elektrobiologische Vorgänge an der menschlichen Hirnrinde.Dtsch Z für Nervenheilkd. 1935; 135: 277-288
- Die operative behandlung der epilepsie.Med Klin. 1909; 5: 1418-1422
- Intraoperative dorsal language network mapping by using single-pulse electrical stimulation: intraoperative Language Network Mapping.Hum Brain Mapp. 2014; 35: 4345-4361https://doi.org/10.1002/hbm.22479
- Studying network mechanisms using intracranial stimulation in epileptic patients.Front Syst Neurosci. 2010; 4https://doi.org/10.3389/fnsys.2010.00148
- Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature.Front Hum Neurosci. 2010; 4: 46
- Intracranial electrophysiology of the human default network.Trends Cognit Sci. 2018; 22: 307-324
- Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures.Neurosurgery. 2005; 57: 706-718https://doi.org/10.1227/01.NEU.0000176656.33523.1e
- Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre surgical series.Brain. 2019; 142https://doi.org/10.1093/brain/awz196
- Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo.Brain. 2002; 125: 1709-1718https://doi.org/10.1093/brain/awf187
- Promises and limitations of human intracranial electroencephalography.Nat Neurosci. 2018; 21: 474-483https://doi.org/10.1038/s41593-018-0108-2
- Characterizing EEG cortical dynamics and connectivity with responses to single pulse electrical stimulation (SPES).Int J Neural Syst. 2018; 281750057https://doi.org/10.1142/S0129065717500575
- Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study.Lancet Neurol. 2005; 4: 718-726https://doi.org/10.1016/S1474-4422(05)70200-3
- Intrinsic functional architecture predicts electrically evoked responses in the human brain.Proc Natl Acad Sci Unit States Am. 2011; 108: 10308-10313https://doi.org/10.1073/pnas.1019750108
- Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy.Seizure. 2017; 44: 27-36
- Decoding two-dimensional movement trajectories using electrocorticographic signals in humans.J Neural Eng. 2007; 4: 264
- Signal quality of simultaneously recorded invasive and non-invasive EEG.Neuroimage. 2009; 46: 708-716
- Mapping human brain networks with cortico-cortical evoked potentials.Phil Trans R Soc B. 2014; 36920130528https://doi.org/10.1098/rstb.2013.0528
- Dynamic tractography: integrating cortico-cortical evoked potentials and diffusion imaging.Neuroimage. 2020; 215: 116763
- Experience-based SEEG planning: from retrospective data to automated electrode trajectories suggestions.Healthc Technol Lett. 2018; 5: 167-171
- Insights into human cognition from intracranial EEG: a review of audition, memory, internal cognition, and causality.J Neural Eng. 2020; 17051001
- Natural frequencies of human corticothalamic circuits.J Neurosci. 2009; 29: 7679-7685
- Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods.Sci Data. 2020; 7: 127https://doi.org/10.1038/s41597-020-0467-x
- SEEG assistant: a 3DSlicer extension to support epilepsy surgery.BMC Bioinf. 2017; 18: 1-13
- An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.Neuroimage. 2006; 31: 968-980
- Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep.Neuroimage. 2015; 112: 105-113https://doi.org/10.1016/j.neuroimage.2015.02.056
- Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients.Nat Commun. 2018; 9: 1-10
- Corticocortical evoked potentials reveal projectors and integrators in human brain networks.J Neurosci. 2014; 34: 9152-9163https://doi.org/10.1523/JNEUROSCI.4289-13.2014
- Probabilistic functional tractography of the human cortex revisited.Neuroimage. 2018; 181: 414-429https://doi.org/10.1016/j.neuroimage.2018.07.039
- Functional connectivity in the human language system: a cortico-cortical evoked potential study.Brain. 2004; 127: 2316-2330https://doi.org/10.1093/brain/awh246
- EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.J Neurosci Methods. 2004; 134: 9-21
- MNE-BIDS: organizing electrophysiological data into the BIDS format and facilitating their analysis.JOSS. 2019; 4: 1896https://doi.org/10.21105/joss.01896
- A comparative study between state-of-the-art MRI deidentification and AnonyMI.a new method combining re-identification risk reduction and geometrical preservation. 2021; 42: 5523-5534
- Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.Neuroimage. 2014; 99: 548-558
- Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use.Physiol Meas. 2017; 38: N118
- Electrocorticography reveals thalamic control of cortical dynamics following traumatic brain injury.Commun Biol. 2021; 4: 1-10
- The human K-complex: insights from combined scalp-intracranial EEG recordings.Neuroimage. 2020; 213116748https://doi.org/10.1016/j.neuroimage.2020.116748
- Features of simultaneous scalp and intracranial EEG that predict localization of ictal onset zone.Clin EEG Neurosci. 2018; 49: 206-212
- Increased delta power as a scalp marker of epileptic activity: a simultaneous scalp and intracranial electroencephalography study.Eur J Neurol. 2022; 29: 26-35
- Time–frequency analysis of single pulse electrical stimulation to assist delineation of epileptogenic cortex.Brain. 2011; 134: 2855-2866
- Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.J Neurosci Methods. 2016; 264: 94-102
- Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study.Brain. 2006; 130: 181-197https://doi.org/10.1093/brain/awl257
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, et al. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity.NeuroImage2021;237:118094.https://doi.org/10.1016/j.neuroimage.2021.118094.
- Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures.J Neurosurg. 1989; 70: 667-675
- The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity.Brain Stimul. 2020; 13: 1183-1195https://doi.org/10.1016/j.brs.2020.05.009
- A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy.Clin Neurophysiol. 2016; 127: 91-101https://doi.org/10.1016/j.clinph.2015.02.013
- Principles of electrical stimulation of neural tissue.Handb Clin Neurol. 2013; 116: 3-18
- New approach for exploring cerebral functional connectivity: review of cortico-cortical evoked potential.Neurol Med -Chir. 2015; 55: 374-382
- Sleep modulates cortical connectivity and excitability in humans: direct evidence from neural activity induced by single-pulse electrical stimulation.Hum Brain Mapp. 2015; 36: 4714-4729
- Tractography-activation models applied to subcallosal cingulate deep brain stimulation.Brain Stimul. 2013; 6: 737-739
- Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression.Biol Psychiatr. 2014; 76: 963-969
- Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes.Brain Stimul. 2019; 12: 877-892https://doi.org/10.1016/j.brs.2019.03.007
- How does deep brain stimulation work? Present understanding and future questions.J Clin Neurophysiol. 2004; 21: 40-50
- Clinical deep brain stimulation strategies for orientation-selective pathway activation.J Neural Eng. 2018; 15056029https://doi.org/10.1088/1741-2552/aad978
- White matter network architecture guides direct electrical stimulation through optimal state transitions.Cell Rep. 2019; 28 (e7): 2554-2566https://doi.org/10.1016/j.celrep.2019.08.008
- Evaluation of cortical local field potential diffusion in stereotactic electro-encephalography recordings: a glimpse on white matter signal.Neuroimage. 2017; 147: 219-232
- Clinical deep brain stimulation strategies for orientation-selective pathway activation.J Neural Eng. 2018; 15https://doi.org/10.1088/1741-2552/aad978
- Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography.Proc Natl Acad Sci Unit States Am. 2015; 112: E2820-E2828
- Determinants of laser-evoked EEG responses: pain perception or stimulus saliency?.J Neurophysiol. 2008; 100: 815-828
- Saliency detection as a reactive process: unexpected sensory events evoke corticomuscular coupling.J Neurosci. 2018; 38: 2385-2397
- Electrical stimulation of the anterior cingulate gyrus induces responses similar to K-complexes in awake humans.Brain Stimul. 2015; 8: 881-890
- Waves of change: brain sensitivity to differential, not absolute, stimulus intensity is conserved across humans and rats.Cerebr Cortex. 2021; 31: 949-960
- The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials.PLoS One. 2017; 12e0184910
- EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time.PLoS One. 2010; 5e10281
- Methodology for combined TMS and EEG.Brain Topogr. 2010; 22: 233-248
- Determination of current density distributions generated by electrical stimulation of the human cerebral cortex.Electroencephalogr Clin Neurophysiol. 1993; 86: 183-192
- Reproducibility in TMS–EEG studies: a call for data sharing, standard procedures and effective experimental control.Brain Stimul: Basic Transl Clin Res Neuromodulation. 2019; 12: 787-790
- A systematic exploration of parameters affecting evoked intracranial potentials in patients with epilepsy.Brain Stimul. 2020; 13: 1232-1244https://doi.org/10.1016/j.brs.2020.06.002
- Effects of antiepileptic drugs on cortical excitability in humans: a TMS-EMG and TMS-EEG study.Hum Brain Mapp. 2019; 40: 1276-1289
- Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters.Brain Stimul. 2022; 15: 491-508https://doi.org/10.1016/j.brs.2022.02.017
- Small worlds inside big brains.Proc Natl Acad Sci U S A. 2006 Dec 19; 103: 19219-19220
- Emerging concepts for the dynamical organization of resting-state activity in the brain.Nat Rev Neurosci. 2011; 12: 43-56
Article Info
Publication History
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy
ScienceDirect
Access this article on ScienceDirectLinked Article
- Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parametersBrain Stimulation: Basic, Translational, and Clinical Research in NeuromodulationVol. 15Issue 2
- PreviewElectrical neuromodulation via direct electrical stimulation (DES) is an increasingly common therapy for a wide variety of neuropsychiatric diseases. Unfortunately, therapeutic efficacy is inconsistent, likely due to our limited understanding of the relationship between the massive stimulation parameter space and brain tissue responses.
- Full-Text
- Preview